SITES-M Mathematics Challenge

Level: Grade One

Standard: Number and Operations

Learning Target: Focus on Addition and Subtraction

Checks for Understanding

- **0106.2.3** Count forward and backward by ones beginning with any number less than 100.
- **0106.2.4** Skip count by twos, fives, and tens.
- 0106.2.10 Use models (such as discrete objects, connecting cubes, and number lines) to represent "part-whole," "adding to," "taking away from," and "comparing to" situations to develop understanding of the meaning of addition and subtraction
 0106.2.13 Solve problems that require addition and subtraction of numbers through 100.

The purpose of the Mathematics Challenges is to provide opportunities for students to develop and demonstrate understanding of important mathematical concepts and standards. Each Challenge includes a set of tasks that require higher-order thinking skills. Because these types of tasks may be new for students and they will have varying levels of understanding, the student responses will vary. The Challenges and guiding questions were designed to help teachers plan their implementation and elicit, analyze, and act on evidence of student understanding.

You will be able to choose which Mathematics Challenge Packet to implement each month, according to the learning needs of your students and your teaching context. Each packet contains all the materials necessary to implement the Mathematics Challenge including a grade-appropriate Challenge, the Mathematics Challenge Meeting Protocol, and the Guiding Questions for Analyzing Student Responses to Mathematics Challenges.

For each Challenge, you will complete a six step process of planning, implementation, and analysis and reflection.

Stage	Step	Task		
	Step 1.	Review the Mathematics Challenge Meeting Protocol		
Planning	Step 2.	Review and solve the Mathematics Challenge prior to your Professional Learning Community (PLC) meeting. Think about your responses to the guiding questions on the Meeting Protocol		
	Step 3.	Hold your PLC meeting and discuss your responses to the Guiding Questions on the Meeting Protocol		
Implementation	Step 4.	Implement the Mathematics Challenge with your class		
	Step 5.	For your own planning and documentation, respond to the Guiding Questions on the Analyzing Student Responses Protocol		
Analysis and Reflection	Step 6.	To help us improve the Challenges and to provide recommendations for teachers implementing them in future years, complete the Mathematics Challenge Feedback Log and provide copies of all student work to the Assessment Coordinator		

The Mathematics Challenge Process

Mathematics Challenge Meeting Protocol

Each month, your Professional Learning Community will meet to discuss the implementation of one Mathematics Challenge. In preparation for your monthly meeting, please print and review this month's Mathematics Challenge, solve all tasks within the Challenge, and think about the guiding questions below. These questions will be used to facilitate a group discussion regarding the implementation of the upcoming Mathematics Challenge.

Guiding Questions for Implementing the Mathematics Challenges

- 1. What is the title of the Challenge that you will use this month?
- 2. What skills or standards is this Challenge measuring?
- 3. Where does this Challenge fit within your curriculum? Within which unit?
- 4. At what point during the unit will you administer this Challenge (e.g., At the beginning of a unit to determine what students do or do not know, at the end of a unit to assess what students have or have not learned, in the middle of a unit to determine where to go next instructionally)?
- 5. How will your students complete this Challenge (e.g., individually, one-on-one, in small groups, as a class)? Why?
- 6. Are there any prerequisite skills, common misunderstandings, or vocabulary needs that you will have to address? What are they?
- 7. What difficulties do you anticipate your students will have with the Challenge? How will you address them?
- 8. Are these skills and difficulties different for special needs students, ELL students, etc.? How? Will you do anything different for these students? What?
- 9. How will you evaluate student responses (e.g., grade responses with the provided rubric, scan responses to identify common mistakes/misconceptions, have students evaluate one another's responses, have students evaluate their own response)?
- 10. What will student responses to this Challenge tell you about student understanding?
- 11. How might you use this evidence of student understanding to adapt your teaching and learning?
- 12. What other materials, resources, or support might you need? Where can you get them?
- 13. How can your colleagues assist you in the analysis of student understanding?
- 14. What other questions or concerns do you have about this Mathematics Challenge?

After you have implemented the challenge with your class, be sure to respond to the Guiding Questions on the Analyzing Student Responses Protocol.

Standard: Number and Operations

Learning Target: Focus on Addition and Subtraction

Claims:

Students should understand and be able to explain or demonstrate how to:

- Count forward and backward by ones beginning with any number less than 100;
- ✓ Skip count by twos, fives, and tens;
- Use models (such as discrete objects, connecting cubes, and number lines) to represent "part-whole," "adding to," "taking away from," and "comparing to" situations to develop understanding of the meaning of addition and subtraction;
- ✓ Solve problems that require addition and subtraction of numbers through 100.

Task Preparation:

Each student will need a copy of the Student Response Sheet and a pencil.

If a student is unable to respond in writing, a scribe may be appointed or verbal answers may be accepted, but the responses will need to be documented for scoring.

Stimulus Cards (Drawing or Word Description):

None

Manipulatives/Supplies:

A copy of the student response sheet for each student Pencils

Cues/Directions:

Distribute student response sheets. If a student is unable to respond in writing, a scribe may be appointed or verbal answers may be accepted, but these responses will need to be documented for scoring. Students should be directed to look carefully at each figure. Allow students time to answer.

Instruct students to follow along as you read aloud and say: There is a big desk drawer in Ms. Anson's class that is filled with pencils, crayons, rulers, and paper clips.

- Say: The students are helping to sort and count the items in the drawer. They made a table to show the numbers of pencils and crayons they counted. (TEACHER NOTE: Students should look at the table.) How many pencils and crayons did they count in all? Show how you get your answer. (TEACHER NOTE: Students should write their explanations in the box.) They counted <u>"blank"</u> pencils and crayons in all. (TEACHER NOTE: Students should write the correct answer in the blank.)
- Are there more pencils or more crayons in the drawer? Show how you get your answer. (TEACHER NOTE: Students should write their explanations in the box.) Check one: More pencils or more crayons. (TEACHER NOTE: Students should check the correct box.) How many more? (TEACHER NOTE: Students should write their explanations in the box.) There are <u>"blank"</u> more <u>pencils or crayons</u>. (TEACHER NOTE: Students should write the correct answers in the blanks.)
- 3. The students put the paper clips into groups of 5. The picture below shows the groups of paper clips. There were 2 paper clips left after grouping. (TEACHER NOTE: Students should look at the picture.) How many paper clips are there in all? Show how you get your answer. (TEACHER NOTE: Students should write their explanations in the box.) There are <u>"blank"</u> paper clips in all. (TEACHER NOTE: Students should write the correct answer in the blank.)
- The students counted 8 rulers in the drawer. How many more paper clips than rulers are in the drawer? Show how you get your answer. (TEACHER NOTE: Students should write their explanations in the box.) There are <u>"blank"</u> more paper clips than rulers. (TEACHER NOTE: Students should write the correct answer in the blank.)

- 5. In the table below, write the number of items the students counted. (TEACHER NOTE: Students should look at the table.) How many items in all are in the drawer? Show how you get your answer. (TEACHER NOTE: Students should write their explanations in the box.) There are <u>"blank"</u> items in the drawer. (TEACHER NOTE: Students should write the correct answer in the blank.)
- 6. Ms. Anson wants to put more rulers in the drawer so that there will be 100 items in the drawer. How many rulers should she put in the drawer? (TEACHER NOTE: Students should write their explanations in the box.) She should put <u>"blank"</u> more rulers in the drawer. How do you know? (TEACHER NOTE: Students should write the correct answer in the blank.)

and the second
ուսակավատիակավատկանականություն
anterdant das

Student Response Sheet What's in Your Desk Drawer?

Date: _____

There is a big desk drawer in Ms. Anson's class that is filled with pencils, crayons, paper clips, and rulers.

The students are helping to sort and count the items in the drawer. They made a table to show the numbers of pencils and crayons they counted.

PENCILS AND CRAYONS THEY COUNTED

Item	Number	
Pencils	46	
Crayons	13	

1. How many pencils and crayons did they count in all? Show how you get your answer.

They counted ______ pencils and crayons in all.

2. Are there more pencils or more crayons in the drawer?

Show how you get your answer.

Check one:	More pencils	More crayons
How many m	ore?	
There are	more	(pencils or crayons)

3. The students put the paper clips into groups of 5. The picture below shows the groups of paper clips. There were 2 paper clips left after grouping.

How many paper clips are there in all? Show how you get your answer.

There are _____ paper clips in all.

4. The students counted 8 rulers in the drawer. How many more paper clips than rulers are in the drawer?

Show how you get your answer.

There are _____ more paper clips than rulers.

5. In the table below, write the number of items the students counted.

Items	Number
Pencils	
Crayons	
Paper clips	
Rulers	

ITEMS IN THE DRAWER

How many items in all are in the drawer?

Show how you get your answer.

There are ______ items in the drawer.

6. Ms. Anson wants to put more rulers in the drawer so that there will be 100 items in the drawer.

How many rulers should she put in the drawer?

She should put ______ more rulers in the drawer.

How do you know?

Learning and Teaching Considerations

Task 1:

- A) Be sure that students understand that the words "in all" generally signify the addition operation.
- **B**) Students may answer in words, symbols, or with a number line. They may also add traditionally, add the tens and ones separately and then add the subtotals, add in chunks, or add the tens first and then the ones. Be sure that they understand that they can get the correct answer using any of the strategies, though some are more efficient.
- C) Be sure that students understand that not only does 46 + 13 = 59 and 13 + 46 = 59 but also 59 = 46 + 13 and 59 = 13 + 46. Using a balance scale may help.
- **D**) Be sure that students understand that it helps to first determine what a reasonable answer would be for a problem. Estimation is often a helpful strategy. For this task, 46 + 13 can be estimated as 50 + 10 = 60.
- **E)** Be sure that students understand that as you move right (\rightarrow) on a number line, the numbers increase in value. As you move left (\leftarrow) , the numbers decrease in value.
- **F)** If a student says or writes, "I just know," prompt him or her by saying something like "I'm glad you know, but it's important in math to be able to explain your answers so other people can understand what you're thinking." (That applies to the other tasks, as well.)
- **G)** If a student says or writes, "I don't know," say something positive like "Let's start with what you do know about this problem." Students often know more than they think or say, and getting them to vocalize or write about that knowledge is all they need. (That applies to the other tasks, as well.)

Task 2:

- A) Be sure that students understand that the word "more" generally signifies comparing numbers or amounts to find out which is greater, the focus of the first question. Determining how many more generally signifies subtracting one number or amount from the other-the focus of the second question.
- **B**) Students may answer in words, symbols, or with a number line. They may also subtract traditionally, subtract the tens and the ones separately and then add the subtotals, or they may subtract in chunks. Be sure that they understand that they can get the correct answer using any of these strategies, though some are more efficient.

- C) Be sure that students understand that "addition" is assumed in the definition of subtraction, so that they can obtain or can check their answers by adding; for example, 46 − 13 = 33 means 46 = 13 + 33.
- **D**) Be sure that students understand that 46 13 = 33 is the same as 33 = 46 13. Using a balance scale may help.
- **E**) Some students may have the misconception that 46 13 is the same as 13 46, like addition. Working with manipulatives and number lines may help.

Task 3:

- A) Be sure that students understand that grouping items is a quick way to add them together. It is a precursor to multiplication.
- **B)** Students may answer in words, symbols, or with a number line. They may skip count by fives, count the groups and multiply, or count the individual paper clips. Be sure that they understand that they can get the correct answer using any of the strategies, though some are more efficient.
- C) Some students may have the misconception that when adding groups of items, each group counts as 1 whole; for example, 5 (groups of five paper clips) + 2 (extra clips) = 7. Working with manipulatives may help.

Task 4:

- A) Students may answer in words, symbols, or by using manipulatives. They may also use number lines, recall number sense, subtract traditionally, add two to each number and then subtract, add on, or subtract in chunks. Be sure that they understand that they can get the correct answer using any of these strategies, though some are more efficient.
- **B**) Be sure that students understand that addition is assumed in the definition of subtraction, so that they can obtain or can check their answers by adding; for example, 27 8 = 19 means 27 = 8 + 19.
- C) Be sure that students understand that 27 8 = 19 is the same as 19 = 27 8. Using a balance scale may help.
- **D**) Some students may have the misconception that 27 8 is the same as 8 27, like addition. Working with manipulatives and number lines may help.

Task 5:

- A) Be sure that students understand that task 5 is a two-step problem. They first have to write in the numbers of items the students counted. Then they need to determine how many items there were in all (addition).
- **B**) Students may answer in words, symbols, or by using manipulatives. They may also add traditionally, add the tens and the ones separately and then add the subtotals, add in chunks, or add the tens first, followed by the ones. They may also add the middle two numbers to get 40 and then add the other two numbers to get 54 (or any other combination). Be sure that they understand that they can get the correct answer using any of the strategies, though some are more efficient.
- C) Be sure that students understand that not only does 46 + 13 + 27 + 8 = 94, but 94 = 46 + 13 + 27 + 8. Using a balance scale may help. They should also know that adding the four numbers in any combination will still result in 94.
- D) Some students may have the misconception that when adding two numbers that require carrying a ten, a hundred, etc., you write the entire number and continue adding; for example, 27 + 8 is 215 because (7 + 8 = 15) or 13 + 27 is 310, for a similar reason. Working with base-10 blocks may help.
- **E)** Be sure that students understand that it helps to first determine what a reasonable answer would be for a problem. Estimation is often a helpful strategy. For this task, 46 + 13 + 27 + 8 can be estimated as 50 + 10 = 60 and 25 + 10 = 35, giving 60 + 35, or 95. Such an estimate should raise a red flag for students who obtain either 215 or 310 as a partial answer.

Task 6:

- A) Be sure that students understand that determining how many more generally signifies subtracting one number or amount from the other–the focus of the question.
- **B**) Students may answer in words, symbols, or by using manipulatives. They may also use number lines, recall number sense, subtract traditionally, add on from 94, or subtract in chunks. Be sure that they understand that they can get the correct answer using any of the strategies, though some are more efficient.
- C) Be sure that students understand that addition is assumed in the definition of subtraction, so that they can obtain or can check their answers by adding; for example, 100 94 = 6 means 100 = 94 + 6.

Name: ANSWER KEY Date:

There is a big desk drawer in Ms. Anson's class that is filled with pencils, crayons, paper clips, and rulers.

The students are helping to sort and count the items in the drawer. They made a table to show the numbers of pencils and crayons they counted.

PENCILS AND CRAYONS THEY COUNTED

Item	Number	
Pencils	46	
Crayons	13	

1. How many pencils and crayons did they count in all? Show how you get your answer.

ד pencils and crayons in all. They counted

2. Are there more pencils or more crayons in the drawer?

Show how you get your answer.

3. The students put the paper clips into groups of 5. The picture below shows the groups of paper clips. There were 2 paper clips left after grouping.

4. The students counted 8 rulers in the drawer. How many more paper clips than rulers are in the drawer?

Show how you get your answer.

5. In the table below, write the number of items the student s counted.

Items	Number
Pencils	46
Crayons	13
Paper clips	27
Rulers	8

ITEMS IN THE DRAWER

How many items in all are in the drawer?

Show how you get your answer.

6. Ms. Anson wants to put more rulers in the drawer so that there will be 100 items in the drawer.

How many rulers should she put in the drawer?

She should put _____ more rulers in the drawer.

How do you know?

CATEGORY	4	3	2	1
Mathematical	Response shows complete	Response shows	Response shows some	Response shows very limited
concepts	understanding of the	substantial understanding	understanding of the	understanding of the
	mathematical concepts used	of the mathematical	mathematical concepts	underlying concepts needed
	to solve the problem(s).	concepts used to solve	needed to solve the	to solve the problem(s), OR
		the problem(s).	problem(s).	the response is not written.
	Response shows evidence in	Response shows evidence	Response shows evidence	Response shows evidence in
	ALL of the following tasks.	in only 4 or 5 of the tasks	in only 2 or 3 of the tasks	only 1 or none of the tasks
	Task 1. Student shows	described in category 4.	described in category 4.	described in category 4.
	evidence of understanding			
	addition of two-digit numbers.			
	<u>Iask 2</u> . Student snows			
	evidence of understanding			
	subtraction to determine now			
	arous then in enother			
	Tack 3 Student shows			
	evidence of understanding			
	counting by 5s			
	Task 4 Student shows			
	evidence of understanding			
	subtraction to determine how			
	many more things are in one			
	group than in another.			
	Task 5. Student shows			
	evidence of counting on or			
	adding numbers to find a total.			
	Task 6. Student shows			
	evidence of subtraction or of			
	counting on from a number to			
	reach a desired total.			

04750001		•	•	4
CATEGORY	4	3	2	1
Strategy and	Student typically uses an	Student typically uses	Student sometimes uses an	Student rarely uses an
procedures	efficient and effective strategy	an effective strategy to	effective strategy to solve the	effective strategy to
•	to solve the problem(s).	solve the problem(s).	problem(s), but not	solve the problem(s).
	······································		consistently.	
	Response shows evidence in ALL	Response shows	Response shows evidence in	Response shows evidence
	of the following tasks.	evidence in only 4 or 5 of	only 2 or 3 of the tasks	in only 1 or none of the
	Task 1. Student shows evidence	the tasks described in	described in category 4.	tasks described in category
	of adding 46 + 13.	category 4.		4.
	Task 2. Student shows evidence			
	of subtracting 46 – 13.			
	Task 3. Student shows evidence			
	of counting by 5s to reach 25 and			
	then adding 2.			
	Task 4. Student shows evidence			
	of subtracting 27 – 8.			
	Task 5. Student shows evidence			
	of adding 46 + 13 + 27 + 8.			
	Task 6. Student shows evidence			
	of counting from 94 to reach 100			
	or shows evidence of subtracting			
	100 – 94.			

	4	•	•	4
CATEGORY	4	3	2	1
Explanation and	Explanation is detailed and	Explanation is	Explanation is a little	Explanation is difficult to
communication	clear; uses appropriate	clear; uses some	difficult to understand, but	understand, is missing
	terminology and/or notation.	appropriate	includes critical	several components, and
		terminology and/or	components; shows little	does not use or include
		notation.	use of appropriate	appropriate terminology
			terminology and/or notation.	and/or notation.
	Response shows evidence in	Response shows	Response shows evidence in	Responses may show
	ALL of the following	evidence in only 2	only 1 explanation described in	calculations, but shows no
	explanations.	explanations	category 4.	evidence of explanation as
	Task 2. Student explains that	described in		described in category 4.
	there are more pencils by using a	category 4.		
	subtraction argument or by			
	explaining how many more			
	crayons are needed to reach the			
	number of pencils.			
	Task 3. Student shows evidence			
	of counting by 5s instead of			
	counting 27 individual paper			
	clips.			
	Task 6. Student explains that 6			
	rulers are needed by using a			
	subtraction argument, or by			
	explaining that if one begins			
	counting at 94, another 6 counts			
	are needed to reach 100.			

CATEGORY	4	3	2	1
Mathematical	All or almost all of the	Most of the steps and	Some of the steps and	Few of the steps and
accuracy	steps and solutions have	solutions have no	solutions have no	solutions have no
	no mathematical errors.	mathematical errors.	mathematical errors.	mathematical errors.
	Student provides correct	Student provides correct	Student provides correct	Student provides a correct
	answers for ALL of the	answers for only 4 or 5 of the	answers for only 2 or 3 of the	answer for only 1 or none of
	following tasks.	tasks described in category 4.	tasks described in category 4.	the tasks described in
	Task 1. Student answers			category 4.
	59.			
	Task 2. Student checks box			
	for more pencils and			
	answers 33.			
	Task 3. Student answers			
	27.			
	Task 4. Student answers			
	19.			
	Task 5. Student completes			
	table, as shown on answer			
	sheet, and answers 94.			
	Task 6. Student answers 6.			

Scoring Notes Checklist

Task	Check Yes	Category
Task 1		
Student shows evidence of understanding addition of two-digit numbers.		Concepts
Student shows evidence of adding 46 + 13.		Strategy
Student answers 59.		Accuracy
Task 2		
Student shows evidence of understanding subtraction to determine how many more things are in one group than in another.		Concepts
Student shows evidence of subtracting 46 – 13.		Strategy
Student explains that there are more pencils by using a subtraction argument or by explaining how many more crayons are needed to reach the number of pencils.		Explanation
Student checks box for more pencils and answers 33.		Accuracy
Task 3		
Student shows evidence of understanding counting by 5s.		Concepts
Student shows evidence of counting by 5s to reach 25 and then adding 2.		Strategy
Student shows evidence of counting by 5s instead of counting 27 individual paper clips.		Explanation
Student answers 27.		Accuracy
Task 4		
Student shows evidence of understanding subtraction to determine how many more things are in one group than in another.		Concepts
Student shows evidence of subtracting 27 – 8.		Strategy
Student answers 19.		Accuracy
Task 5		
Student shows evidence of counting on or adding numbers to find a total.		Concepts
Student shows evidence of adding 46 + 13 + 27 + 8.		Strategy
Student completes table, as shown on answer sheet, and answers 94.		Accuracy
Task 6		
Student shows evidence of subtraction or of counting on from a number to reach a desired total.		Concepts
Student shows evidence of counting from 94 to reach 100 or shows evidence of subtracting 100 – 94.		Strategy
Student explains that 6 rulers are needed by using a subtraction argument, or by explaining that if one begins counting at 94, another 6 counts are needed to reach 100.		Explanation
Student answers 6.		Accuracy

Analyzing Student Responses Protocol

The purpose of the Mathematics Challenges is to provide opportunities for students to develop and demonstrate understanding of important mathematical concepts and standards. They include extended responses, open-ended tasks, and tasks that require higher-order thinking skills. Because these types of tasks may be novel for students and they will have varying levels of understanding, the student responses will vary.

The guiding questions below were designed to assist you in analyzing your class' response to the Challenge and determining appropriate next steps for your teaching and learning. Responses to these questions are for your reflection and documentation and will not be collected.

Guiding Questions for Analyzing Student Responses to the Mathematics Challenges

1. When completing the Challenge, what did your students do well? How do you know?

2. When completing the Challenge, what did your students struggle with? How do you know?

3. When your students completed the Challenge, did they implement multiple correct solutions strategies? What insightful approaches to problem solving did you observe?

4. What, if any, patterns (e.g., common errors/misconceptions) did you observe across your student responses?

5. What questions or concerns did your students have when working through this Challenge or a particular task? Are these things you should address for the class as a whole?

6. What, if any, feedback did you provide to your class? How did you provide it?

7. What did you learn about your students' mathematical understanding based on their responses to this Challenge?

Reminders:

- After you have completed the Challenge with your class and responded to these Guiding Questions for Analyzing Student Responses, please complete the Challenge Feedback Log. A link to this Log is e-mailed to you each month. Responses will be used to improve the Challenges and to provide recommendations for teachers implementing the Challenges in future years.
- 2) Please provide copies of all student work to the Assessment Coordinator.