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Abstract A Bayesian network model is a popular technique for 
data mining due to its intuitive interpretation. This paper 
presents a semantic genetic algorithm (SGA) to learn a complete 
qualitative structure of a Bayesian network from a database. 
SGA builds on recent advances in the field and focuses on the 
generation of initial population, crossover, and mutation 
operators. Particularly, we introduce two semantic crossover and 
mutation operators that aid in faster convergence of the SGA. 
The crossover and mutation operators io SGA incorporate the 
semantic of the Bayesian network structures to learn the structure 
with very minimal errors. SGA bas been proved to perform 
better than existing classical genetic algorithms for learning 
Bayesian networks. We present empirical results to prove the fast 
convergence of SGA and the predictive power of the obtained 
Bayesian network structures. 

Index Term- Data mining, Bayesian networks, genetic 
algorithms, structure Ieaming 

1. INTRODUCTION 
ne of the most important steps in data mining is to build a 
descriptive model of the database being mined. To do so, 
probability-based approaches have been considered an 

effective tool because of uncertain nature of descriptive 
models. Unfortunately high computational requirements and 
the lack of proper representation have hindered the building of 
probabilistic models. To alleviate the above twin problems, 
probabilistic graphical models have been proposed. In the past 
decade, many variants of probabilistic graphical models have 
been developed, with the simplest variant being Bayesian 
networks (BNs) [l]. Bayesian networks are employed to 
reason under uncertainty, with wide varying applications in the 
field of medicine, finance, and military planning [I]  [3]. A 
Bayesian network is a popular descriptive modeling technique 
for available data by giving an easily understandable way to see 
relationships between attributes of a set of records. 
Computationally, Bayesian networks provide an efficient way 
to represent relationships between attributes and allow 
reasonably fast inference of probabilities. A lot of research has 
been initiated towards learning these networks fiom raw data as 
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the traditional designer of a Bayesian network may not be able 
to see all of the relationships between the attributes. 

Learning and reasoning are the main tasks of analyzing 
Bayesian networks. We focus on the structure learning of a 
Bayesian network fiom a complete database. The database 
stores the statistical values of the variables as well as the 
conditional dependence relationship among the variables. We 
employ a Genetic algorithm (GA) technique to learn the 
structure of Bayesian networks. Genetic algorithms have been 
successfully applied in optimization tasks [7] [XI. The 
Bayesian network learning problem can be viewed as an 
optimization problem where a Bayesian network has to be 
found that best represents the probability distribution that has 
generated the data in a given database. 

The rest of the paper is organized as follows. Section 2 
introduces the background of Bayesian network and GA, and 
the related work in Bayesian network structure learning. In 
Section 3 we discuss the details of our approach for structure 
learning in a Bayesian network structure using a modified GA. 
In Section 4, we experiment two different genetic algorithms. 
The first one is the genetic algorithm with classical genetic 
operators. In the second algorithm, we extended the standard 
mutation and crossover operators to incorporate the semantic of 
the Bayesian network structures. Section 4 also presents the 
results for the two genetic algorithms under the two constraints. 
Finally, Section 5 concludes the paper and proposes future 
research. 

11. BACKGROUND AND RELATED WORK 

A. Structure learning of Buyesiun networks 
Formally, a Bayesian network consists of a set of nodes 

which represent variables, and a set of directed edges between 
the nodes. The nodes and directed edges constitute a directed 
acyclic graph (DAG). Each node is represented by a finite set 
of mutually exclusive states. The directed edges between the 
nodes represent the dependence between the linked variables. 
The strengths of the relationships between the variables are 
expressed as conditional probability tables (CPT). A Bayesian 
network efficiently encodes the joint probability distribution of 
its variables. The encoding can also be viewed as a conditional 
decomposition of the actual joint probability of variables. Fig. 
1 depicts a hypothetical example of a Bayesian network. 
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Figurc 1. A Baycsian network with k e e  variables 

The three variables shown in Figure 1 are 
X = { x , X > ,  Y = {y7j7} ,  and Z = { z , T } ,  where X and Y are 
parents of 2. The DAG for the example is shown in Fig. l a  and 
the CPT for node 2 is shown in Fig. lb. The joint probabilities 
can be determined as p ( X ,  Y, Z) = p(X).p(U).p(Z I X ,  Y) . 
From the figure, it is clear that once a structure is found, it is 
necessary to compute the conditional probabilities for node 2 
with parents X and Y for all possible combinations and their 
prior probabilities. 

In general, the DAG and CPT specify the Bayesian network 
and represent the distribution for the n-dimensional random 
variable(X ,,...., Xn) : 

where xi represents the value of the random variable X ,  and 
pa(x,)  represents the value of the parents of X i .  Thus, the 
structure learning problem of a Bayesian network is equivalent 
to the problem of searching the opti" in the space of all 
DAGs. During the search process, a trade-off between the 
stnrctural network complexity and the network accuracy bas to 
be made. The trade-off is necessary as complex networks 
suffer fiom over fining making the run time of inference very 
long. A popular measure to balance complexity and accuracy is 
based on the principle of minimal description length (MDL) 
fiom information theory [6]. In this paper the Bayesian 
network learning problem is solved by searching for a DAG 
that minimizes the MDL score. 

B Related Work 
Larranaga et al. proposed a genetic algorithm based upon the 

score-based greedy algorithm [Z]. In their GA implementation, 
a DAG is represented by a connectivity matrix that is stored as a 
string (the concatenation of its rows). Recombination is 
implemented as one-paint crossover on these strings, while 
mutation is implemented as random bit flipping. In a related 
work, Larranaga et al. [lo] employed a wrapper approach by 
implementing a CA that searches for an ordering that is passed 
on to K2 [4], a score-based greedy learning algorithm. The 
results of the wrapper approach were comparable to those of 
their previous GA. Different crossover operators have been 
implemented in a GA to increase the adaptiveness of the 
learning problem with good results [ l l] .  Lam et al. 161 
proposed a hybrid evolutionary programming (HEP) algorithm 
that combines the use of independence tests with a quality 

based search. In the HEP algorithm, the search space of DAGS 
is constrained in the sense that each possible DAG only 
connects two nodes if they show a strong dependence in the 
available data. The €€EF algorithm evolves a population of 
DAGs to find a solution that minimizes the MDL score, The 
common drawback to the algorithms proposed by Lam and 
Larranga is that the crossover and mutation operators they used 
were classical in nature and the operators do not help the 
evolution process to reach the best solution. Our algorithm 
differs from the above algorithms in the design of crossover 
and mutation operators. 

111. MODIFIED GA APPROACH 

A Representative Function and Fitness Function 

The first task in a GA is the representation of initial 
population. To represent a BN as a GA individual, an edge 
matrix or adjacency matrix is needed. The set of network 
structures for a specific database characterized by n variables 
can be represented by an nxn connectivity matrix C. Each bit 
represents the edge between two nodes where 

1, i f j  is a parent of i c. = {  
'I 0, otherwise 

The two-dimensional array of bits can be represented as an 
individual of the population by the following string 
C,lCl 2... C~nC2,CZ Z...C2n...CnlCn2...C,, , where the first n 
bits represent the edges to the first node of the network, and so 
on. It can be easily found that C, are the irrelevant bits which 
represent an edge fiom node k to itself which can be ignored by 
the search process. 

With the representative function decided, we need to devise 
the generation of the initial population. There are several 
approaches to generate initial population. We implemented the 
Box-Muller random number generator to select how many 
parents would be chosen for each individual node. The 
parameters for the Box-Muller algorithm are the desired 
average and standard deviation. Based on these two input 
parameters, the algorithm generates a number that fits the 
distribution. For our implementation, the average corresponds 
to the average number of parents for each node in the resultant 
BN. After considerable experimentation, we found that the 
best average was 1.0 with a standard deviation of 0.5. Though 
this approach is simple, it creates numerous illegal DAG due to 
cyclic subnetworks. An algorithm to remove or fur these cyclic 
structures has to be designed. The aIgorithm simply removes a 
random edge of a cycle until cycles are not found in a DAG 
individual. - 

Now that the representative function and the population 
generation have been decided, we have to find a good fitness 
function. Most of the current state-of-the-art implementations 
use the fitness function proposed in the algorithm K2 [4]. The 
K2 algorithm assumes an ordered list of variables as its input. 
The K2 algorithm maximizes the following function by 
searching for every node from the ordered list a set of parent 
nodes: 
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Iv. SIMULATIONS 

In this section we present the overall simulation 
Fig. 2 shows the overall 

The 
methodology to verify SGA. 
simulation setup to evaluate our genetic algorithm. 
following are the main steps carried out: 

Step 1. Determine a Bayesian network (structure + conditional 
probabilities) and simulate it using a probabilistic logic 
sampling technique [I31 to obtain a database D, which reflects 
the conditional independence relations between the variables; 
Step 2. Apply our SGA approach to obtain the Bayesian 
network structure B, , which maximizes the probability 

where yi represents the possible value assignments 

( vi, , ..., vjG ) for the variable with index i, Ngk represents the 

number of instances in database in which a variable Xi has 

value vik , and qi represents the number of unique instantiations 

of Pa b; 1 ‘ 

B Mutation and Crossover Operators 
We introduce two new operators SM (semantic mutation) and 

SPSC (single point semantic crossover) to the existing standard 
mutation and crossover operators. The SM operator is a 
heuristic operator that toggles the bit value of a position in the 
edge matrix. After the toggle process, the fitness function 
g(xi ,p , (x i ) )  is evaluated to ensure that the new individual with 
the new toggled value leads to a better solution. The new 
crossover operator is specific to our representation function. 
As the function is a two-dimensional edge matrix consisting of 
columns and rows, our new crossover operator operates on 
either columns or rows. Thus the crossover operator generates 
two offsprings by either manipulating columns or rows. The 
SPSC crosses two parents by a) manipulating columns or 
parents and maximizing the function g(x , ,p , (x , ) ) ,  and b) 
manipulating rows or children and maximizing the function 
n g ( x i , p a ( x i ) )  . By combining SM and SPSC, we 

implement our new genetic algorithm: semantic GA (SGA). 
Following is the pseudocode for the semantic crossover 
operation. The algorithm expects an individual as input and 
returns the modified individual after applyng semantic 
crossover operations. 

I 

Psuedocode for Semantic Crossover 

Step 1 ,  Initialization 

node 

Step 2. Generate new individual 

Read input individual and populate parent table for each 

2.1 For each node in the individual do the following n 

2.2 Execute the Box Mueller algorithm to find how 

2.3Ensure that the nodes selected as parents do not form 

2.4 Evaluate the network score of the resultant 

2.5 If current score is higher than previous score, then 
the chosen parents are the new parents of the 
selected node. 

times 

many parents need to be altered. 

cycles. If cycles are formed repeat 2.2 

structure. 

2.6 Repeat 2.2 through 2.5. 

Step 3. Return the final modified individual. 

P(DIBsi ;  
Step 3. Evaluate the fitness of the solutions. 

The simulations were implemented by incorporating our 
SGA algorithm into the Bayesian Network Tools in Java (BNJ) 
[9]. BNJ is an open-source suite of software tools for research 
and development using graphical models of probability. A 
learning algorithm based on SGA was implemented and 
incorporated into the tool kit. SGA was implemented as a 
separate module using the BNJ MI. To depict the Bayesian 
network BNJ visually provides a visualization tool to create 
and edit the network. The Bayesian networks of different 
network sizes were used in the simulations. The network sizes 
are 8, 12, 18, 24, 30 and 36. The 8 node Bayesian network 
used in the simulations is fiom the ASlA networks [12]. The 
remaining networks were created by adding extra nodes to the 
basic ASIA network. The ASIA network introduced by Lritzen 
and Spiegelhater illustrate their method of propagation of 
evidence, considers a small of fictitious qualitative medical 
knowledge. Fig. 3 shows the structure of ASIA network. 

Vis i tha  Q Smoking c;: 
Dyspnea 

Figure 3. Structure of thc ASIA network. 

There are several techniques for simulating Bayesian 
network. For our experiments -we have adopted the 
probabilistic logic sampling technique. In this technique, the 
data generator generates random samples based off the ASIA 
network’s joint probability distribution table. The data 
generator sorts nodes topologically and picks a value for each 
root node using the probability distribution, and then generates 
values for each child node according to its parent’s values in the 
joint probability table. The root mean square error (RMSE) of 
the data generated compared to the network it was generated 
from is approximately 0. This indicates that the data was 
generated correctly. We have populated the database with 
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2000, 3000, 5000 and 10,000 records. This was done to 
measure the effectiveness of the Ieaming algorithm in presence 
of less information and more information. 

The algorithm used the following input: 

0 Population size A. The experiments have been carried 
out with A = 100 and A = 150. 
Crossover probability p,  , we chose p ,  = 0.9. 

Mutation rate p,,, , we considered p ,  =O. 1 .  
The fitness function used by our algorithm is based on the 

formula proposed by Cooper and Herskovits [4]. For each of 
the samples (2000, 3000, 5000, IOOOO), we executed 10 runs 
with each of the above parameter combinations. We 
considered the following four metrics to evaluate the behavior 
of our algorithm. 

Averageptness value - This is an average of finesses 
function values over 10 runs. 
Bestfitness value ~ This value corresponds to the best 
fitness value throughout the evolution of the CA. 
Average graph errors - This represents the average of 
the graph errors between the best Bayesian network 
structure found in each search, and the initial Bayesian 
network structure. Graph errors are defined to be an 
addition, a deletion or a reversal of an edge. 
Average number of generations - This represents the 
number of generations taken to find the best fitness 
hnction. 

To evaluate SGA, we also implemented the ciassical genetic 
algorithm (CGA) with classical mutation (CM) and single point 
cyclic crossover (SPCC) operators. Fig. 4 plots the average 
fitness values for the following parameter combination. The 
average and best fitness values are expressed in terms of 
logp(DIBs) . The numbers of records are 10,000. The 
population size is set at 200 and the probabilities for the 
crossover operators SPCC and SPSC are kept at 0.9 and for 
mutation operators SM and CM are kept at 0.1. Tbe figure also 
shows the best fitness value for the whole evolution process. 
One can see that SGA performs better than CGA in the initial 0- 
20 generations. AAer 20 generations, the genetic algorithm 
using both operators stabilizes to a common fitness value. The 
final fitness value is very close to the best fitness value. An 
important observation is that the average fitness value does not 
deviate a lot even after 100 generations. The best fitness value 
is carried over to every generation and does not get affected. 

Figs. 5 and 6 plot the final learned network after the 
evolution process. The final learned Bayesian network was 
constructed from the final individual generated after 100 
generations. The representation of the individual is in the form 
of a bit string representing an adjacency matrix. The 
conversion from this bit-string to the equivalent Bayesian 
network is trivial. Fig. 5 refers to the learned Bayesian network 
graph after 100 generations for 5,000 records, while Fig. 6 
shows the learned Bayesian network graph for 10,000 records. 
It can be observed that for both the scenarios, the learned 
network differs from the actual generating network shown in 
Fig. 3 by a small number of graph errors. It is also worth noting 

that the numbers of graph errors reduce when the total numbers 
of records increase. This could mean that to reduce the total 
number of graph errors, a large number of records need to be 
provided. 

-2zm 
564 --3 
CGA 

-m 

-22450 

Figure 4. Plot of generations versus avcrage fitness values (lo000 Rccords) 

\ J  
TbOrCa K d' pspnea 

Figure 5. Lcamed network after 100 gencmtions for 5,000 records -graph 
errors = 3. 

VisitAsia c) 

Figure 6. Learned network after 100 generations for 10,000 records -graph 
mors = 2. 

Tables 1 and 2 provide the average number of generations 
and the average -graph errors for the different number of 
records, It is obvious that for 2000 records the total number of 
generations taken to achieve the stabilized fitness value is very 
high. Also the average number of graph errors is too high. For 
3,000, 5,000, and 10,000 records the values for the metrics are 
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very reasonable and acceptable. To compare the performance 
of SGA with CGA in the presence of larger BN structures, we 
modified the 8-node ASIA network and generated 5 additional 
BN with node sizes 12, 18, 24, 30, and 36. Tables 3-7 show 
results for simulations carried out on these additional BNs. The 
tables compare the average graph errors in both approaches. 
The accuracy of SGA does not deteriorate under increased 
network sues. 

Records SGA(8) CGA (8) 

Table 1. Average number of generations 

SGA(12) CGA(l2) 

Records 

3000 

2000 
3000 
5000 

1 5000 I 20 I 15 I 

7 8 7 8 
3 4 3 4 
2 3 2 3 

1 10000 I 20 I 15 

Records SGA(30) CGA(30) 
3000 53 63 
5000 60 66 
10000 70 72 

SGA(36) CGA(36) 
60 68 
70 74 
79 81 

I , I I I I 

Table 3. Average Graph errors for 18 and 24 nodes 

10000 52 61 

v. CONCLUSIONS AND FUTURE WORK 

We have presented a new semantic genetic algorithm (SGA) 
for BN structure learning. This algorithm is another effective 
contribution to the list of structure learning algorithms. Our 
results show that SGA discovers BN structures with a greater 
accuracy than existing classical genetic algorithms. Moreover, 
for large network sizes, the accuracy of SGA does not degrade. 
This accuracy improvement does not come with an increase of 
search space. In all our simulations, 100 to 150 individuals are 
used in each of the 100 generations. Thus 10,000 to 15,000 
networks are totally searched to learn the BN structure. 

n2 Considering the exhaustive search space is of 2 networks, 
only a small percentage of the entire search space is needed by 
our algorithm to learn the BN structure. 

One aspect for h t u r e  work is to change the current random 
generation of adjacency matrices for the initial population 
generation. The second future work is to improve scalability by 

parallelizing the genetic algorithm. There are two 
computationally expensive operations in our genetic algorithm. 
The first deals with initializing the first generation of 
individuals and evaluating fitness values for each of them. A 
strategy to divide the initial populations among a cluster of 
workstations could be devised to speed up the computational 
process and reduce the final running time. 
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