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Abstract—Opportunistic spectrum access presents a new ap-
proach to wireless spectrum utilization and management. In
this paper, we propose a non-cooperative based OSA approach:
learning-based approach to allow multiple secondary users to
achieve maximal throughput in an unslotted opportunistic spec-
trum access (OSA) network. In this approach, collisions among
secondary users are taken into consideration while making
channel sensing decisions. Spectrum maps for secondary users
are estimated based on occurrence of collisions. Our approach
allows secondary users to achieve maximal throughput by seeking
independent spectrum opportunities without exchanging any
control information among secondary users. Numerical results
show that the learning-based approach obtains near-optimal
performance in most of the scenarios.

I. INTRODUCTION

The proliferation of a wide range of wireless devices has
resulted in an overly crowded radio spectrum. In contrast to
this scarcity in spectrum availability is the pervasive existence
of spectrum opportunities. Real measurements show that, at
any given time and location, a large portion of licensed
spectrum lies unused [1]. To exploit the abundant spectrum
opportunities, cognitive radio networks have been proposed
as a novel approach to improve spectrum utilization. Op-
portunistic spectrum access (OSA) is one of the approaches
envisioned for dynamic spectrum management in cognitive
radio networks [2]. The basic idea of OSA is to allow
secondary users to identify and exploit spectrum opportunities
under the constraint that they do not cause harmful interference
to primary users.

Most of the existing works on OSA strategies assume the
presence of a slotted primary network [2]-[9]. These OSA
strategies maximize the throughput of an individual secondary
user in a multi-channel slotted primary network. In presence
of multiple channels, a key decision for every secondary
user is to determine which channel to sense. With multiple
secondary users contending for spectrum opportunities, the
sensing decision must take into account the possibility that the
good channels may be desired by other users. At the beginning
of every slot, every secondary user senses an idle primary
channel to potentially transmit over. Based on the sensing
decision in the beginning of the slot, secondary users decide if
the channel will be idle for the remaining of the slot. However,
if the primary users adopt an unslotted transmission scheme,
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the channel can switch between idle and busy state at any
time. This leads to potential collisions with the primary users
or missed opportunities in spite of perfect sensing during the
sensing period. The secondary users need to make a decision
to transmit based on its sensing decision. The secondary
users should minimize missed opportunities due to inaccurate
detection outcomes and limit collisions with the primary users.

In this paper, we design a learning-based OSA approach to
enable secondary users maximize their spectrum opportunities
in unslotted primary networks. Our learning-based approach
explores the interaction between secondary users to make the
channel sensing decision. Specifically, each secondary user
takes into consideration a partial spectrum map of colliding
secondary users. The partial spectrum map is obtained by
estimating colliding secondary user’s channel belief vector.
The belief vectors are implicitly learned and updated based
on the occurrence of collisions. The is an important property
as secondary users cannot completely ignore the presence of
other secondary users. The channel sensing decision is more
effective in every subsequent time slots as each secondary user
learns from the collision information. Collisions provide an
approximate estimate of the level of activity for secondary
users in the channels. Another important property of our
learning-based approach is that there is no explicit exchange
of spectrum maps between secondary users.

The rest of the paper is organized as follows. Section 2
briefly reviews the related work. We formulate the problem
and provide the network model in Section 3. In Section 4,
we introduce the learning-based approach and conduct the
performance analysis. The simulation results are presented in
Section 5. Finally, Section 6 provides the concluding remarks.

II. RELATED WORK

Research on OSA strategies have primarily been conducted
in the following three scenarios: single-user setting, multiuser
setting, and unslotted primary networks. In [3], [5], the strat-
egy for a single secondary user to maximize total throughput
in a slotted primary network is proposed. However, in real
OSA networks, multiple secondary users opportunistically
seek spectrum access from primary users. In [4], [6], multiple
secondary users reserve channels by sending control messages
on coordination channels. The presence of a common control



channel is only advantageous in networks where there are high
availability of unused channels. Finally, there have been very
few research efforts on OSA strategies for unslotted primary
networks [7], [8]. But both [7], [8] do not model contention
among multiple secondary users. In this paper, we propose a
learning based approach which does not require cooperation
or coordination and uses feedback information from collisions
to assign channels to multiple secondary users in an unslotted
primary network.

III. PROBLEM DEFINITION
A. Network Model

We consider a unslotted primary network with m =
1,2,.., M secondary users. Each secondary user can sense
n = 1,2,..,N primary channels, each with bandwidth B;
(j =1,2,...,N). The occupancy of the N channels by primary
users are modeled as independent continuous-time Markov
processes [7]. The availability of channel j for secondary
user ¢ is modeled as a two-state continuous time Markov
chain with a state of Si(t), where Si(t) = 1 indicates
that there is an opportunity for secondary user ¢ in channel
j» and Si(t) = 0 otherwise. The idle and busy periods
for channel j are exponentially distributed with parameters
A; and p;, respectively. This leads to an unslotted primary
network, where the primary users can access the channel at any
time. Secondary users, however, adopt a slotted transmission
structure with a slot length of 7. At each slot, a secondary user
chooses one of the IV channels to sense and decide whether
to transmit over the chosen channel based on the sensing
outcome. The operations in a secondary slot are shown in
Fig. 1.

Consider the transmission slot of length 7 starts at time ¢.
The beginning of the slot is used for sensing one of the NV
channels which takes 75 seconds. We assume that a secondary
user can distinguish primary user traffic from other secondary
users. Based on the current sensing decision and past sensing
results, the secondary user can choose to either transmit on one
of the N channels or not transmit at all. The channel access
takes place during the access period [t + 75,t + 75 + 7¢] of
the slot. If the channel remains idle for the entire duration of
[t +7s,t+Ts + 7¢], the transmission is successful; otherwise, a
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Fig. 1. Operations in a secondary slot.

collision occurs. At the end of each time slot, a secondary user
predicts the states of the channels in the next time slot with the
latest sensing outcome. Notice that even if a secondary user
has sensed the channel to be idle during the sensing period 7,
the primary user may become busy during the time duration
[t + Ts,t + 75 + T

B. Problem Formulation

We formulate the opportunistic channel access problem as
a constrained POMDP represented by the tuple (S, 4, R, W)
given below.

o S represents the state of the underlying system at the
beginning of each slot for every secondary user. For sec-
ondary user 7, the state in channel j is given by S;(k) =
S;i(t)|t=(k_1)7, where k = 1,...,T is the slot index. The
system state in slot k£ for all secondary users is thus
S(k) = [SH(k), SH(k), oo SY (), S3(K), .., SY (k)] €
{0, 13" Recall that Si(k) is a discrete-time Markov
chain for secondary user 7 and channel j. The state tran-
sition probabilities of the Markov chain are as follows,
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e A is the combined action space for all secondary users.
Specifically, after every sensing operation, every sec-
ondary user can either choose to transmit in one of
the IV channels or, alternatively, not transmit at all. We
use a’(k) to denote the action taken by user i in time
slot k. An acknowledgement (ACK) is piggybacked to
indicate whether the transmission by secondary user i
on channel j is successful or not; ACK/(k) € {0(no
success),1(success)}.

o R represents the reward accrued by a successful trans-
mission. The reward is defined as the number of bits
delivered when a secondary user senses and transmits
on the channel chosen by action a’(k) in the current
time slot. We use Rj(k) to denote the award accrued
by secondary user ¢ on channel j during time slot k.

e W represents the belief vector. Each secondary user
cannot directly observe the entire system state due to
limited sensing. However, a secondary user can infer the
system state from its decision and observation history.
The statistical information on the system state provided
by the entire decision and observation history can be
encapsulated in a belief vector. A belief vector for user
i at time slot k, namely Wi(k), is a N-dimensional
vector (wf(k), wh(k),...,wl (k)), where w’(k) denotes
the conditional probability for secondary user ¢ to access
channel j in time slot k given S%(k) = 1.



We propose a learning-based OSA approach. The goal of
our OSA approach is to achieve maximal throughput for

Define pfg, J(k) as the probability of user ¢ to sense channel
7 in time slot k. User ¢ then computes the channel sensing

secondary users. Here, we measure the throughput as the total
number of bits that can be delivered by secondary users in T
slots, which can be computed by summing the expected reward
for all secondary users. Thus, the problem can be formulated
as follows,

T M .
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where O;(k) € 0(noaccess), 1(access) denotes the deci-
sion taken by the secondary users to access channel j during
the access time period. The collision constraint defined in
the above equation indicates that the probability of collision
P7"(k) perceived by the primary users in any channel j and
slot k is equal to zero. ¥;(k) is defined as the availability of
an idle channel j :

(k) = { L,  Sit)=1Vte[(k—1)T+ 75, k7]

0, otherwise

Our learning-based OSA approach involves different de-
grees of learning among the secondary users. In each time
slot, the learning-based approach allows each secondary user
to implement the thee main operations from Fig. 1 in following
four phases: i) channel sensing phase, ii) channel access phase,
iii) reward phase, and iv) prediction phase. Next, we will
present the details of the approach.

IV. LEARNING-BASED OSA APPROACH

The basic idea of the learning-based approach is that
secondary users should learn from collision events in order
to maximize the network throughput. The strategy for each
secondary user is to decide with what probability to sense
a channel so that the collisions with other secondary users
are minimized. Though collision reduces the network through-
put, it provides information to estimate the belief vector of
secondary users. In our approach, each secondary user not
only maintains an estimated belief vector of itself, but also
maintains an estimated belief vector for other secondary users
by learning from collision events. We assume that a secondary
user can correctly identify the signal of primary users and the
other secondary users. This can be implemented by adding an
identification preamble in front of every frame transmitted by
secondary users. Next, we explain the implementation of the
four phases and conduct the performance analysis.

A. Channel Sensing Phase

Let p; ;(k) be channel j's idle probability in time slot k
from the perspective of user 7. At the beginning of slot k, user
i first retrieves its reward and the channel idle probabilities
information which are calculated in phases of reward and pre-
diction (explained later). It then decides with what probability
to sense each channel so that the collisions with other users
are minimized.

probability vector P§(k) = (ps (k), pso(k), s PS5, (K)). In
order to minimize the collisions with other secondary users, an
optimization process needs to be carried out. The optimization
equation is given by:
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In Eq. (3), pis (k) [Lepr (1l — ng)) denotes the prob-
ability that at least one user is about to sense channel
- (s 000 ()RS (0) Tl (1 = Pl ) i the expected
throughput obtained from channel j. After summing over all
secondary users and channels, the throughput in the whole
spectrum is obtained. The above optimization process is im-
plemented on each secondary user independently. Therefore,
each secondary user has a different view of the channel
probabilities. At the end of this phase, each secondary user
has computed the channel sensing probabilities. In the next
phase, one of the channels will be chosen to access.

B. Channel Access Phase

In this phase, the channel sensing probabilities will be
mapped to a concrete decision in determining which channel
to access. Specifically, user ¢ needs to perform the action
a'(k) € {0,1,...,N} by choosing one specific channel for
transmission. Notice that it is possible that a’(k) = 0; this
means that user ¢ will have no transmission at all. The value
for a'(k) is chosen such that the expected immediate reward
is maximized. Mathematically,

Pi(k)) = 0

. 07
a'(k) :{ arg max (P§(k)),  otherwise )

j=1,...,N
As can be seen the first two phases map secondary users to
various channels across the whole spectrum in a distributive
fashion and thus is able to achieve a maximal throughput
for secondary users. The next two phases collect information
needed by the next time slot.

C. Reward Phase

Recall that in an unslotted primary network, the occupancy
of each channel by primary users follows an unslotted trans-
mission scheme. Collisions may occur in spite of the fact that
the channel is idle during the sensing period. In this phase,
each secondary user computes its reward based on the actual
transmission quality. A successful transmission will accrue a
reward, and cost is incurred if a collision occurs.



The reward R} (k) is defined as the total number of bits
successfully transmitted when secondary user ¢ accesses chan-
nel j for transmission in slot k. Given the acknowledgement
ACK;(k) transmission rate r;, and transmission time 7, the
reward R} (k) can be calculated as follows,

R(k) = ACK}(k)r;m (%)

From Eq. (5), we get the reward accumulated by a secondary
user in the current time slot. By substituting Eq. (5) in Eq. (2),
the reward accumulated by all secondary users in the current
time slot is computed. Thus, we have the maximal throughput
for all secondary users. As shown in Eq. (2), R;(k) influences
the computation of P§(k). A zero value for R} (k) indicates
a collision has taken place. In every subsequent time slot, the
maximal throughput is attained by reduced collisions which
leads to a higher reward.

D. Prediction Phase

In this phase, the belief vectors are first computed and
then are used for the calculation of channel idle probabilities.
Based on two network scenarios, we present two distinct
computations of belief vectors. In the first scenario, the num-
ber of channels exceeds the number of secondary users. In
this case, each secondary user estimates the belief vector of
other secondary users. In the second scenario, the number of
channels is less than the number of secondary users. In this
case, some secondary users will not be able to transmit for
long periods of time as they are not able to sense any channel.
Thus, the secondary user independently pick the channel for
which it has a higher belief of seeing an opportunity.

In the first scenario, the secondary user maintains a belief
vector of itself and estimates the belief vectors of other
secondary users by learning from the collision events. The
estimation of belief vectors ensures that there is no message
exchange between secondary users. Also the collision infor-
mation provides accurate belief vector estimation for other
secondary users. Should a collision occur, every secondary
user identifies the colliding users based on the identification
provided in the preamble. The initial belief vector is set to the
stationary distribution of the underlying Markov process if no
information on the initial system state is available. The update
of belief vector in every time slot is shown in Eq. (6).

P (R)wh (k) +

, (1 — (wh (k)b (),
if ai(k) # j

Py (k) (k) + (1 = (wh (k)))peh (k),

wi(k+1) = { if a’(k) = j and (k) # j and Si(k) =1
and collision(i,l, k) = FALSE
iy (k),
if a’(k) = j and collision(i,l, k) = TRUE

(6)
where collision(i,1, k) represents whether a collision occurs
between secondary users [ and 4 in time slot k, a'(k) is the

predicted action of secondary user [ by secondary user ¢ using
the estimated belief vector w' (k).

In the second scenario, secondary users do not estimate
the belief vectors of other secondary users. The channel
access decision is made based on the channel estimation of
individual user. Each secondary user then updates its belief
vector independently as follows:

pY,. if ai(k) = j and Si(k) =0
oy, if a'(k) =j @
szJD if a'(k) # j

Once the belief vectors are computed, the next step is to
calculate the channel idle probabilities which will be used
in the next time slot. Given the belief vector wj(k) and
state transition probabilities from Eq. (1), the probability that
channel j is idle in the next time slot for secondary user ¢ is
given by

w;(k +1)=

pi; = wi(k)pii (k) + (1 — wi(k))pg) (k) ®)

The prediction phase is the final task to be completed in the
current time slot. In the subsequent time slot, each secondary
user retrieves its reward and the channel idle probabilities from
the previous time slot, and then repeats the execution for all
four phases starting from the channel sensing phase.

E. Computation Complexity

The computation overhead comes mainly from the com-
putation of Pj. From Eq. (3), the optimization equation can
reduced to a maximum weighted matching problem in a
bipartite graph G(V1,Vs, E), where Vi, = N and V5, = M.
Edge e € F = (i,7) means that channel j is available to
secondary user ¢. The maximum weighted matching problem
for a bipartite graph can be solved in polynomial time [11].
If M > N, Pl can be computed in O(N2M) time slots;
otherwise O(M?2N) time slots.

V. NUMERICAL RESULTS

In this section we present comprehensive simulations in
MATLAB to evaluate the performance of our learning-based
approach. We will compare the performance of the learning-
based approach with equal probability strategy and cooper-
ative multi-user approach. In the equal probability strategy,
secondary users sense each channel with the same probability.
In the cooperative multi-user strategy, each secondary user has
a complete view for channel availability for other secondary
users by exchanging belief vectors. In our simulations, the
values for primary traffic parameters A and p are motivated
by practical experiments conducted in [9]. The number of
primary users in the network is equal to the total number of
channels N. The idle-times show heavy-tailed behavior and
are approximated b an exponential distribution with parameter
1/A = 4.2ms. The channel busy period is assumed to be
1/p = 1ms. We assume that the bandwidth B = 1 and the
length of the time slot 7 = 1ms.



TABLE I
IMPACT OF THE VARIATION IN IDLE PROBABILITY DISTRIBUTION ON THE
NETWORK THROUGHPUT IN A 6-CHANNEL NETWORK WITH 4 SECONDARY

USERS.
Idle Probability Optimal | Coop | Learn | Equal
[0.1, 0.1, 0.1, 0.2, 0.2, 0.7] 1.15 1.15 1 0.88
[0.8, 0.1, 0.03, 0.03, 0.03, 0.03] 1.24 1.24 1.08 0.96
[0.1, 0.1, 0.1, 0.4, 0.4, 0.5] 0.76 0.75 0.62 0.5
[0.4, 0.15, 0.15, 0.15, 0.15] 1.25 1.25 1.13 1.02
[0.15, 0.15, 0.15, 0.15, 0.15, 0.15] | 1.35 1.35 1.22 1.11

A. Performance of learning-based approach in presence of
multiple secondary users

In this simulation, we evaluate the network performance
under different message arrival rates. In Fig. 2, we present
the total throughput experienced by four secondary users in a
six channel network. Message arrivals at the secondary users
form a Poisson process. The message length is geometrically
distributed with an ave length of 50 packets. In each
slot, secondary users do not participate in the channel sensing
and access activities if they do not have packets to transmit.
The total number of time slots used in simulations are 1000.
Unsurprisingly, the performance of the cooperative approach
is closer to the optimal approach with a price of high commu-
nication overhead. The throughput obtained in our learning-
based approach is lower than the cooperative approach by 10-
15%.
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Fig. 2. Throughput for 4 secondary users in a 6-channel network

B. The impact of idle probability distribution on the perfor-
mance of learning-based approach

In this simulation, we examine the impact of varying
idle probabilities from channel to channel on the through-
put of secondary users. Fig. 3a shows a scenario where
the idle probabilities vary sharply from channel to channel
[0.7,0.2,0.2,0.1,0.1,0.1]. Fig. 3b shows a scenario where
the idle probabilities vary smoothly from channel to channel
[0.5,0.4,0.4,0.1,0.1,0.1]. In Fig. 3a and Fig. 3b , when the
number of secondary users are lesser than the number of
channels, the learning-based approach performs better than the
equal-probability approach. When the number of secondary
users exceeds the number of channels, the performance of both
the approaches are closer to each other.

Table II depicts the throughput obtained by four secondary
users with different channel idle probability distributions. The
performance of optimal approach and cooperative approach
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(a) Sharply varying idle probabil- (b) Smoothly varying idle proba-
ities. bilities.

Fig. 3. Impact of varying idle probabilities.

are indistinguishable. The learning based approach does not
perform as well as the cooperative approach, but it performs
better than the equal-probability approach.

VI. CONCLUSIONS

In this paper, we proposed a learning-based approach to
allow multiple secondary users to achieve maximal throughput
by exploiting idle periods in an unslotted primary network.
Our approach is computationally less expensive and has no
communication overhead as it does not involve exchange of
spectrum maps among other secondary users. The performance
of the learning-based approach is closer to the cooperative and
optimal approaches with no communication overhead.
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