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Abstract 
 

In this paper we present a majority-based method to 
learn Bayesian network structure from databases 
distributed over a peer-to-peer network. The method 
consists of a majority learning algorithm and a majority 
consensus protocol. The majority learning algorithm 
discovers the local Bayesian network structure based on 
the local database and updates the structure once new 
edges are learnt from neighboring nodes. The majority 
consensus protocol is responsible for the exchange of the 
local Bayesian networks between neighboring nodes. The 
protocol and algorithm are executed in tandem on each 
node. They perform their operations asynchronously and 
exhibit local communications. Simulation results verify 
that all new edges, except for edges with confidence 
levels close to the confidence threshold, can be 
discovered by exchange of messages with a small number 
of neighboring nodes.  
 
 
 
1. Introduction 
 

A Bayesian network is a probabilistic graphical model 
to represent uncertain data. It has been known that a 
Bayesian network is a popular and effective model to 
perform data mining. In a Bayesian network, 
relationships between variables can be viewed pictorially 
through a directed acyclic graph, which shows local 
dependencies between variables. In a data mining 
context, the network structure is learnt by the 
implementation of an algorithm which searches for the 
most likely relationships between variables in a database 
[7]. In many applications, the database is often 
distributed over a peer-to-peer network. The 
implementation of distributed data mining in such a 
network is quite challenging. For instance, it is 
impractical to perform global communications and global 
synchronization due to the significant overhead. 
Moreover, databases are distributed so widely that it will 
usually not be feasible for central processing. They must 
be processed in place by distributed algorithms suitable 
to this kind of computing environment. 

In this paper, we address the problem of learning a 
Bayesian network structure from databases distributed 
over a peer-to-peer network. The significant contribution 
of this paper is the design of majority network learning 
algorithm and the majority consensus protocol. The 
majority learning algorithm discovers the local Bayesian 
network structure based on the local database and 
updates the structure once new edges are learnt from 
neighboring nodes. The majority consensus protocol is 
responsible for the exchange of the local Bayesian 
networks between neighboring nodes. The algorithm and 
protocol work in tandem to discover the global Bayesian 
network structure. The key strength of the majority 
learning algorithm is to ascertain the confidence in the 
new edges discovered by the majority consensus protocol 
such that a node is able to learn the global Bayesian 
network structure as if it were given the combined 
database. The key strength of the majority consensus 
protocol is its faster convergence with fewer messages 
overhead. The performance of the protocol is not 
dependent on user configurable parameters. This 
independence feature makes the protocol more 
predictable and robust. Moreover, the protocol is 
implemented locally and thus requires no 
synchronization among nodes. This locality feature leads 
to faster convergence of the computation of the global 
Bayesian network structure with lower message 
overhead. By locality, we imply that each node updates 
its Bayesian network structure based on the edge 
information provided by a small set of neighbors.  

The rest of the paper is organized as follows. In 
Section 2, we briefly introduce the related work. Section 
3 formulates the problem. Section 4 presents the majority 
learning algorithm and majority consensus protocol. 
Section 5 provides the simulation results and analysis. 
Finally, Section 6 concludes the paper.           
 
2. Related Work 
 

The database used for learning a Bayesian network 
structure could either contain complete data or 
incomplete data. Learning a Bayesian network from 
complete data has been discussed in [4], [5], [8], and 
[11]. The methodologies of structure and parameter 
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learning have been tested on local datasets only. For all 
the above methods to be effective, all data must be 
available at a central location. To the best of our 
knowledge, the performance of these methodologies on 
distributed datasets has not been experimented. Learning 
a Bayesian network from incomplete data has been 
discussed in [12], [13], [14], [15], and [17]. The learning 
methodologies for incomplete data are a good fit for 
distributed Bayesian network learning. But none of the 
above methodologies have been experimented in an 
environment where additional data is available for 
improving the learning performance. 

Though there have been significant research 
performed on learning the structure and parameters of a 
Bayesian network on a local database, research effort on 
distributed database has been minimal. To the best of our 
knowledge, there have been only two models presented 
for distributed Bayesian network learning. Kenji has 
worked on the homogeneous distributed learning 
scenario [8]. In this case, every distributed node has the 
same feature but different observations. A collective 
approach to implement a distributed Bayesian network 
has been proposed by Chen et al. [3]. But this approach 
is implemented in a client-server framework for 
heterogeneous databases. To identify cross links, every 
node has to submit relevant databases to the central 
server. The central server is responsible for learning the 
Bayesian network which represents the entirely 
combined distributed database. Each individual node, 
however, is only able to create its own Bayesian network 
based on its local database. Both models, however, 
propose a centralized approach that downloads all 
databases from distributed nodes. 

The majority consensus protocol proposed in this 
paper is similar to the majority voting protocols [2], [22]. 
The majority vote problem is similar to the persistent bit 
problem [9], [10], for which local protocols were given. 
The main drawback of the aforementioned persistent bit 
protocols is that each of them assumes some form of 
synchronization. In [10], a node queries a group of other 
nodes and must await a reply before it proceeds. In [9] 
the protocol works in locked-step and assumes a global 
clock pulse. There are also more subtle differences which 
make these protocols impractical for majority vote. For 
instance, the former only works when the majority is 
very evident while the latter, because it allows any 
intermediate result to be corrupted, requires O(N) 
memory at each node, where N is the network size. In 
contrast, our majority consensus protocol requires no 
synchronization at all. 
     The most noticeable work for distributed data mining 
algorithms in peer-to-peer networks is presented in [22]. 
In this approach a local communication based model is 
chosen to learn association rules in a distributed 
database. The messages exchanged between nodes 

include the data items and a confidence level for the 
rules. The efficiency of the local communication model is 
dependent on the size of the data items exchanged and 
the neighbor list. Not surprisingly, there is a significant 
message overhead due to the presence of data items in 
each message exchange between two peers. Also the 
validity of the protocol depends on user supplied 
frequency and confidence parameters. This makes the 
protocol less robust to different kinds of databases. 
 
3. Problem Statement 
 

The problem of learning the structure of global 
Bayesian network can be defined as follows. For a 
complete global database distributed over a peer-to-peer 
network, and a known variable order, the problem is to 
identify the structure of the Bayesian network at each 
node that best matches the global database. The 
underlying distribution of data at each node may or may 
not be identical. As an example, Fig. 1 illustrates that a 
global database is distributed across three nodes. The 
nine variables in the global database are distributed as 
illustrated. The observations for these variables are 
available at all three nodes. Eventually, all three nodes 
learn the same Bayesian network as shown in Fig. 2. 

 
 

Fig. 1: A global database distributed at three nodes. 
 

 
 
Fig. 2: The global Bayesian network discovered at each 
node. 
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4. Majority-based Method 
 
Notations 
DB The global database 
V Set of variables in DB, v∈V 
E Set of edges representing relationships among 

the variables in DB. Each edge (edg) has two 
attributes: confidence level (conf) and the 
number of records (num) in DB that are 
considered in determining the confidence. 

BN The global Bayesian network, BN≡(V, E) 
DBi The database at node i 
Vi Set of variables in DBi 
Ei Set of edges in DBi 
BNi The local Bayesian network at node i 
Ni Set of neighboring nodes for node i 
r The majority ratio to make a decision on a 

certain confidence level 
∏i  The majority value computed by a consensus 

process among the nodes in Ni 
∏ij The majority value computed by a consensus 

process between nodes i and j, j∈ Ni  
 

The objective of our majority-based method is to 
ensure that all nodes in the network converge towards the 
correct BN. To this end, we develop two components, 
which execute on each node in tandem. The majority 
learning algorithm component specifies the minimal 
amount of information sent by each node, updates the 
local Bayesian network structure at each node, and 
terminates the learning process when a global solution 
has been reached. The majority consensus protocol 
component specifies the communication mode among the 
nodes, the frequency of messages exchange, and the level 
of co-ordination required. The rationale of our majority-
based method is to combine a Bayesian network learning 
algorithm and a majority consensus protocol to discover 
all relationships between variables that exist in the 
combined database. The primary issues addressed are the 
reduction of the computation complexity and the 
communication overhead. 

The primary steps in the algorithm and protocol are 
summarized as follows. The majority learning algorithm 
computes a local Bayesian network based on the 
variables associated with the data observed on each node. 
In the meantime, the majority consensus protocol 
independently identifies the neighbors for each node. A 
membership protocol on the lines of Newscast [6] is 
employed by the consensus protocol to fill up the 
neighbor list for each node. The consensus protocol 
creates a message and transmits the local Bayesian 
network and the confidence level to the neighbors. On 
receipt of the message, the majority learning algorithm 
updates the local Bayesian network by new edges if the 

resulting confidence level of the updated Bayesian 
network is better. The above process is repeated until the 
structure of BN is learnt at each node.  

Fig. 3 illustrates the message flow between two 
neighboring nodes. Nodes 1 and 2 have a local Bayesian 
network learnt from their local databases. The majority 
learning algorithm at node 1 passes the Bayesian network 
structure to the majority consensus protocol. The 
protocol creates a message containing the list of edges 
and the confidence levels for each edge. This message is 
communicated to node1’s neighbor node2. On the 
reception of message, the majority consensus protocol at 
node 2 keeps a record of the message received from node 
1. This message is communicated to the majority learning 
algorithm, which updates its local Bayesian network 
structure accordingly. Similar process is carried out when 
node 2 communicates its local Bayesian network 
structure to node 1. 

 
Fig. 3: Message flow between nodes 1 and 2. 
 
4.1 Majority Learning Algorithm 

 
The majority learning algorithm is responsible for 

discovering new edges based on its local data and 
combining edges discovered by other nodes by using a 
structure learning algorithm. The structure learning is a 
model selection process, wherein we need to select model 
based on the data. We adopt a searching and scoring 
based method K2 which defines a confidence that 
describes the fitness of each possible structure to the 
observed data [5]. The K2 algorithm is similar to an 
optimization problem: find a structure of Bayesian 
network that maximizes the confidence. The confidence 
function has a decomposability property defined as 
follows: 

( , ) {( , ( )), ( , ( ))}conf BN DB conf v pa v DB v pa v= ∑  (1) 
where ( )pa v  represents the parent of variable v, and 
DB(v, pa(v)) denotes the data involving only v and 
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( )pa v . Once the confidence level is defined for the 
variables at each node, the next step is to identify the 
local Bayesian network with the highest confidence level. 
It is known that the search for the optimal Bayesian 
network is NP-hard, leading to the need for sub-optimal 
search methods. As the K2 algorithm is characterized by 
a decomposability property, the sub-optimal search 
methods involve making a series of edge changes (adding 
or deleting of edges one at a time). Every time an edge is 
changed, a check is performed to ascertain if the resultant 
local Bayesian network is a valid directed acyclic graph. 
For every edge change, a confidence level 

( , )conf BN DBb b  is calculated for BNb before the change 
and ( , )conf BN DBa a  for BNa after the change. The 
decision on whether BNb  or BNa   is the best fit depends 
on which of the confidence levels has a maximum value. 
As the score satisfies the decomposability property, 
confidence levels of edges are maintained by computing 
the following score for each edge: 

{( , ( )), ( , ( ))}conf v pa v DB v pa v . 
Once a message is received from the majority 

consensus protocol, the message indicates a new edge or 
an existing edge with updated confidence level. If the 
message indicates a new edge, the edge is added to the 
local Bayesian network. Otherwise, the confidence level 
of the corresponding edge is updated. Either case, the 
confidence level computation is then performed. The 
structure of the local Bayesian network is then modified 
based on the difference between the confidence levels 
before and after the change. The psuedocode for the 
algorithm is provided below. 

 
Psuedocode 1 Majority Learning Algorithm 
Newscast(Ni)  //discover neighbor list  
BNJ(Ei)  //discover local edge list 
for e∈Ei 
    for j∈Ni 
        confij =  numij = confji = numji = 0 
MessageRecv(edgji,confji, numji) 
if edgji∉Ei 
    add(BNi,edgji) 
Compute ( , )conf BN DBb b  and ( , )conf BN DBa a  
if ( , )conf BN DBb b  < ( , )conf BN DBa a  
   Add(Ei, edgji, confji, numji) 
else 
    Update(BNi, edgji) 
    if ( , )conf BN DBb b  < ( , )conf BN DBa a  
        Update(edgji, ∏ij, ∏i)   
        //∏ij and ∏i are explained in consensus protocol 
while(true) //ensure neighbors have updated confidence 
for e∈Ei 
    for j∈Ni 
        if {(∏ij < 0) and (∏ij < ∏i)} or 

           {(∏ij > 0) and (∏ij >∏i)}         
        

,
c o n f c o n f l ii j l i j N i

∑=
≠ ∈

 

        
,

n u m n u m l ii j l i j N i
∑=

≠ ∈

 

        MessageSend(edgij, confij, numjj)  
 
The visual representation for the majority Bayesian 

network learning algorithm is provided in Fig. 4.  
 

Fig. 4: A visual illustration of the majority learning 
algorithm from the perspective of node i. 

 
The first scenario is depicted Fig. 4a wherein node i 

has three edges a->b, a->c, and c->d. On receipt of a 
new edge e->f from node k (Fig. 4b), the edge is added to 
node i and its attributes are computed. In the second 
scenario (Fig. 4c) node i receives an updated confidence 
level for edge c->d from node k. Thus, the majority 
values for edge c->d are computed at node i as shown in 
Fig. 4d. As the conditions ∏i > ∏ij and ∏i > ∏il are 
satisfied, messages are sent to nodes j and l to update 
their confidence levels for edge c->d.  
 
4.2 Majority Consensus Protocol 
 

The majority consensus protocol is based on an 
optimization problem where nodes decide whether they 
have all the observations necessary to learn the structure 
of BN.  Following are the two main processes in the 
majority consensus protocol: message construction and 
majority selection.   
 
a. Message Construction 

The format of the message exchanged between nodes 
contains the identity of edge, the confidence levels of 
edge, and the total number of data records in the local 
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database. The goals of the message construction process 
are to encode sufficient information necessary for 
majority selection and to maintain reasonable message 
length. The message sent from node i to node j is 
represented as a 3-field tuple, (edgij, confij, numij), where 
edg represents the relation between any two variables in 
the database, conf is the confidence level that represents 
the accuracy of the presence of the relation, and the num 
represents the count of number of records that were 
considered in determining the confidence level. The 
confidence level and number of records are normalized to 
100. Once a message is constructed, nodes communicate 
their messages to their neighboring nodes. Each node 
will record the latest messages it sent to its neighboring 
nodes and the latest messages it received from its 
neighboring nodes. These confidence values and number 
of records are used in the calculation of majority values 
for each edge. 
 
b. Majority Selection 

The objective of the majority selection process is to 
ensure that each node converges toward the correct 
majority. The correct majority refers to the correct 
confidence level for all edges. The consensus among 
nodes is measured as the proportion of nodes whose ad 
hoc solution agrees with the majority value. Based on 
message sent or received with its neighbors, node i 
calculates the majority values as follows, 

( )

( ) ( )

i conf r numj N iji ij

ij conf conf r num numij ji ij ji

∑Π = − ×∈

Π = + − × +
     (2) 

If no message was yet received from any neighbor, ∏i 
takes the majority value represented by the confidence 
levels computed by the local majority learning algorithm. 
The presence or absence of an edge is decided according 
to the majority value in ∏i. If the sign of ∏i is positive, 
then the edge is accepted. Each time there is a change in 
the local confidence levels, message is received or a new 
neighbor connects, ∏ij and ∏i are calculated. Each node 
implements the majority selection process independently. 
Node i coordinates the confidence level of each edge 
with its neighbor j by maintaining the same values in ∏ij. 
For every edge, i and j stop exchanging messages as long 
as the following conditions are true: ∏i > ∏ij ≥ 0, and ∏i 
> ∏ji ≥ 0. Similarly, when the conditions 0 i ij>Π ≥Π , and 
0 j ji>Π ≥Π  hold, no messages are exchanged. The 
pseudocode for the majority selection process is shown 
in psuedocode 2.  

 
Psuedocode 2 Majority Selection Process 
Newscast(Ni)    
Getmajorityratio(r) 

for i ∈ Ni  
       ∏i = 0 
      for j ∈ Ni 

     0ijΠ =  
            0confij=  
            0numij=  

      end 
      if MessageRecv(edgji,confji, numji) 

           
( )

( ) ( )

i conf r numj N iji ij

ij conf conf r num numij ji ij ji

∑Π = − ×∈

Π = + − × +

 

      for j ∈ Ni 
            if {( ijΠ < 0) and ( ijΠ < iΠ )} or  
                {( ijΠ > 0) and ( ijΠ > iΠ )} 

                
, ,

, ,

conf confj l N j l liiij

num numj l N j l liiij

∑= ∈ ≠

∑= ∈ ≠
 

               MessageSend(edgii,confij, numij)    
               //node i sends message to node j 
      end 
end 

 
From the pseudocode, it is easy to derive that when 

the protocol dictates that no node needs to send any 
message, it implies that for every node j the ∏ij values for 
the neighbors match with the  ∏i values. If there is a 
disagreement on the structure of BN, then due to locality 
there must be disagreement between two immediate 
neighbors. Locality is defined as the size of the 
neighborhood of a node. To measure locality, it is 
important to classify the neighbor size as maximum and 
average scope. The number of message interactions is 
bound by the size of the system. This implies that the 
protocol always reaches consensus in a static state. Fig. 5 
depicts a graphical illustration of the majority selection 
process, in which r is set to 0.5.  

Fig. 5: A visual illustration of the Majority Selection process 
from the perspective of node i. 
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Fig. 5a illustrates the current state. Prior to this state, 
nodes j, k, and l have exchanged messages with node i, 
and node i has computed the majority values using (2). In 
Fig. 5b, a message is sent from node k to node i. As a 
result, node i revaluates ikΠ  and iΠ . No additional 
messages are sent to nodes j and l as iΠ is equal to ijΠ  
and ilΠ . In Fig. 5c, node k sends another message to 
node i. On reception of this message (Fig. 5d), values of 

ikΠ  and iΠ  get further reduced. By now, the conditions 
of i ijΠ <Π and i ilΠ <Π  hold. Thus, node i sends 
messages to nodes j and l. 
 
5. Simulations and Analysis 
 

To validate and verify the majority based consensus 
methodology, a software package based on BNJ [1] and 
Peersim [16] has been developed to implement our 
majority learning algorithm and consensus protocol. 
Time is divided into rounds. A round is defined as the 
amount of time taken by all nodes to execute one 
instance of the protocol and algorithm. All of the nodes 
were connected in a random tree. For lack of real 
datasets, the ASIA model dataset [13] was used in 
simulations. We generated 1,000,000 observations from 
this model, which were distributed among the nodes in 
the network. In practice, we do not have control over the 
distribution of the data among different nodes. Local 
Bayesian networks were constructed using a K2 [5] 
structure learning algorithm. 
 
5.1 Effect of Majority Consensus Local 
Communications 
 
One of the main performance characteristics of our 
protocol is the locality of the majority selection protocol. 
Locality is quantified by measuring the scope of a node. 
The scope of a node is defined as the number of 
neighbors whose confidence levels are maintained by the 
node. The overall locality is measured by taking into 
account the maximum and average values of scope. The 
average locality is preferred for majority selection. The 
scope also provides information related to message 
exchange and processing overhead. Message overhead is 
computed based on the total number of messages 
exchanged between a node and its neighbors. Processing 
overhead is computed by calculating the number of 
cycles required for each node to arrive at a decision. 
Hence average locality also makes the communications 
fast and efficient. Fig. 6 shows the locality of the 
protocol to determine the existence of one relational edge 
between two variables. The confidence levels for the 
relational edge are based on the amount of related data at 
each node. As the data is randomly distributed among the 

5,000 nodes, the confidence levels for the relational edge 
are assigned randomly.  
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Fig. 6: Locality for network size of 5,000 nodes and with 
majority ratio 50%. 
 

From Fig. 6 we conclude that if data is distributed in 
an unbiased fashion, the locality of the protocol is 
assured. For a majority ratio of 50%, if the confidence 
level is greater than 60% or less than 40%, the number of 
nodes involved in the message exchange is limited to 10-
12 nodes. As the confidence level approaches 50%, the 
average scope grows. This indicates that more nodes 
have to be involved in the decision-making when the 
confidence level approaches the majority ratio. This 
conclusion can be generalized as that all new edges, 
except the edges with confidence levels close to the 
confidence threshold, can be discovered by exchange of 
messages with a small number of neighboring nodes, 
whose size is independent of the size of the network.  
 
5.2 Convergence of the Learning Algorithm 
 

We measure the convergence of the majority learning 
algorithm by calculating the percentage of new edges 
discovered and the percentage of correct edges in the 
global Bayesian network. Fig. 7 shows the percentage of 
new edges discovered on an average basis during the 
execution of the majority learning algorithm.  

In Fig. 7, the confidence levels of the edges in the 
majority of the nodes were away from the majority ratio. 
This leads to fewer messages exchanged and thereby 
most of the nodes agree on the majority decision quickly. 
All edges are discovered at the end of 12 rounds. The 
lesser number of rounds confirm the fact that if the 
confidence levels of the edges are far away from the 
majority ratio the nodes discover the new edges quickly. 
As the number of messages exchanged between the 
nodes decreases, the nodes can reach a decision quickly 
leading to fewer rounds.  
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Fig. 7: Percentage of new edges and correct edges 
discovered for a network of 5,000 nodes. 
 

Fig. 8 shows the percentage of the nodes that arrive at 
a correct global Bayesian network model when the 
confidence level in the edges are less than or equal to 
40%. For edges with confidence levels lesser than or 
equal to 30%, all the nodes quickly arrive at a decision to 
reject the edges. The number of rounds taken to arrive at 
this decision is less than or equal to 10. This result 
confirms the fact that all nodes converge quickly when 
edges have confidence levels much lower than the 50% 
threshold. 
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Fig. 8: Percentage of nodes that compute the right decision 
for confidence levels lesser than or equal to 30 % threshold. 
 
     Fig. 9 shows the percentage of the nodes that arrive at 
a correct global Bayesian network model when the 
confidence level in the edges is greater than or equal to 
60%. For edges with confidence levels greater than or 
equal to 70%, all the nodes quickly arrive at a decision to 
accept the edges. The number of rounds taken to arrive at 
this decision is less than or equal to 10. This result 
confirms the fact that all nodes converge quickly when 
the edges have confidence levels much higher than the 
50% threshold. 
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Fig. 9: Percentage of nodes that compute the right decision 
for confidence levels greater than or equal to 70%. 

 
In Fig. 10, the confidence levels are closer to the 

threshold. The presence of majority of nodes with 
confidence levels near the 50% threshold leads to more 
messages exchanged thereby delaying the agreement on 
decision making by all the nodes. The figure indicates 
that for edges with confidence levels near the 50% 
threshold requires large portion of the network to 
participate to arrive at a decision. So edges with 
confidence levels closer to 50% take a significant amount 
of time for all nodes to agree upon. 
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Fig. 10: Percentage of nodes that compute the right decision 
for confidence levels near the 50% threshold. 

 
To better explain Figs. 7, 8, 9, and 10, the interaction 

between the majority consensus protocol and majority 
based Bayesian network algorithm needs to be analyzed. 
The majority consensus protocol behaves in a wave 
pattern characterized by positive slopes and negative 
slopes. In the first round, every node assumes the 
confidence level to be zero. In the initial rounds, the 
protocol convinces more nodes of a certain confidence 
level leading to a wave with a positive slope. But when 
the majority of nodes do not agree on a certain 
confidence level, then the wave exhibits a negative slope. 



 8

If the confidence level among the edges is between 70-
90%, then the edges are learnt quicker and agreed by 
most nodes. These are the edges which are very 
significant and are expected to be discovered in the 
earlier rounds and agreed by all the nodes in the network 
fast. The same analysis applies for edges with lower 
confidence levels (10-30%). The edges with low 
confidence levels are rejected earlier by most of the 
nodes. They are also discovered early but are quickly 
rejected as greater portion of the local database is 
scanned. Now, the edges with confidence levels between 
(40-60%) require more rounds for all the nodes to agree 
with the majority decision.  As these confidence levels 
are near the 50 % majority threshold, the majority based 
Bayesian network algorithm takes a longer time for all 
the nodes to agree with the majority decision. 
   
6. Conclusions 
 

We have developed a new methodology for 
discovering the structure of a global Bayesian network 
from data distributed in a peer-to-peer network. The crux 
of the methodology is the majority Bayesian network 
learning algorithm and the majority consensus protocol. 
The unique features of the protocol and algorithm are the 
locality of communications, less overheard, high 
accuracy, and quick convergence. Analysis indicates that 
there is a significant saving in message overhead by 
applying our protocol when the confidence levels are not 
close to the majority ratio. Simulations demonstrate that 
as the confidence levels are away from the majority ratio, 
fewer messages are exchanged and thereby the protocol 
and algorithm accurately discover the correct edges 
within less number of rounds.   
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