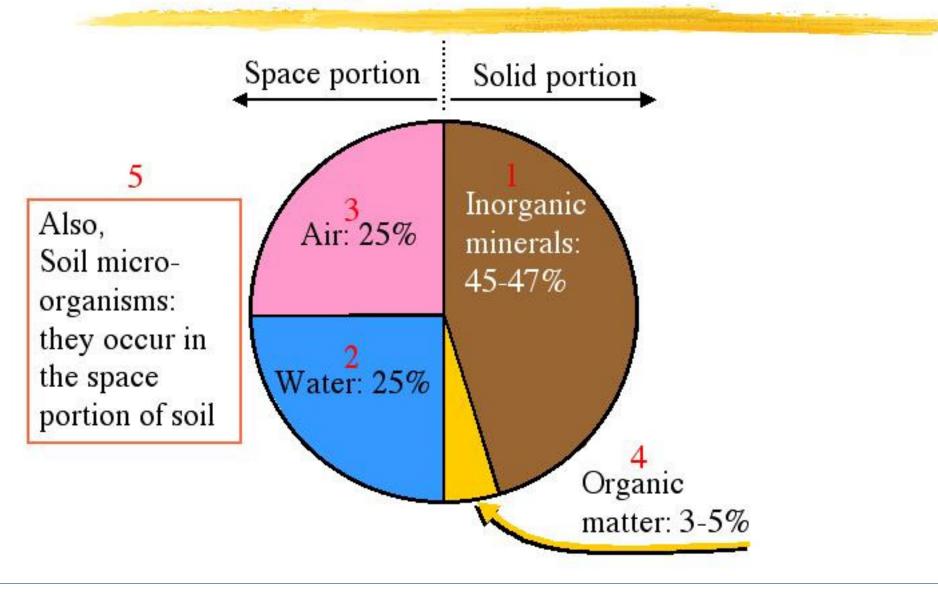
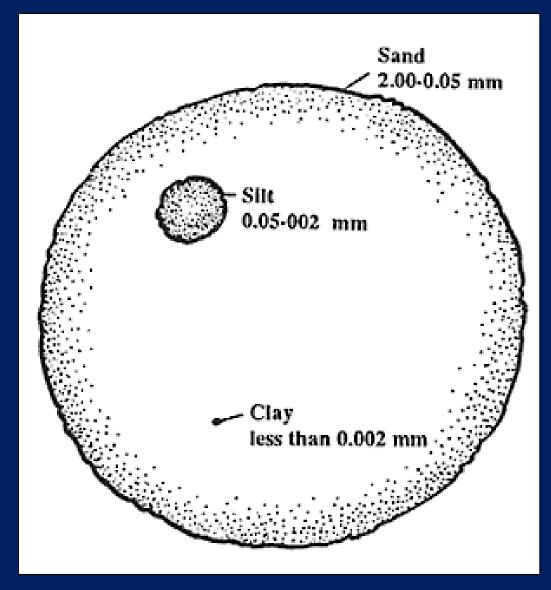
Soil Improvement

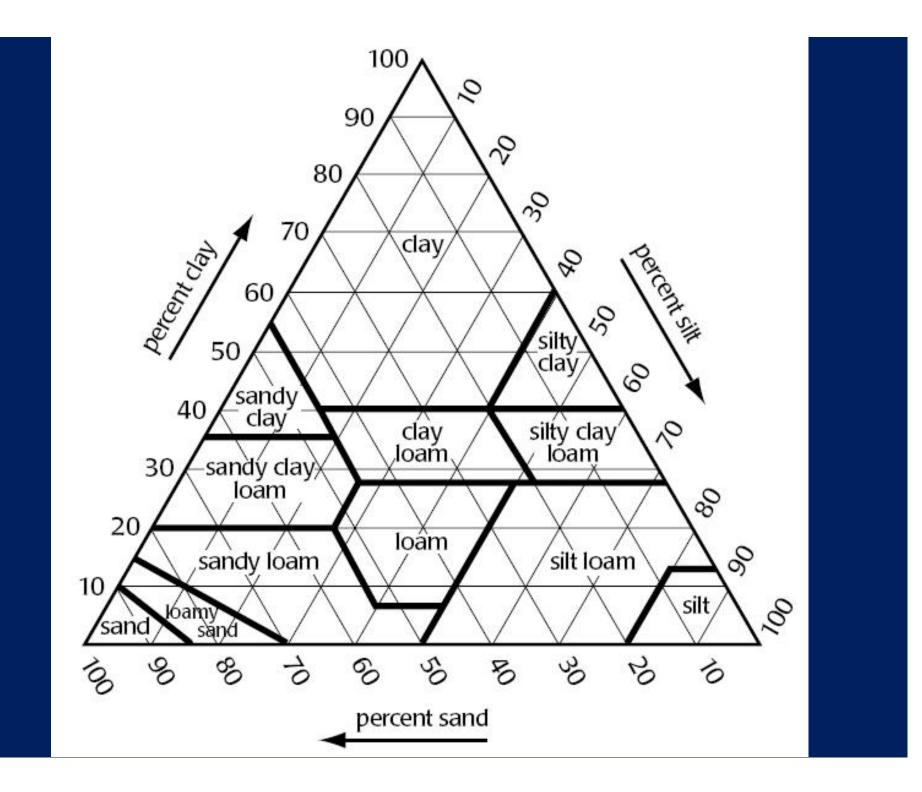
Dr. Jason de Koff Extension Specialist – Agronomy and Soils

5 Soil Forming Factors

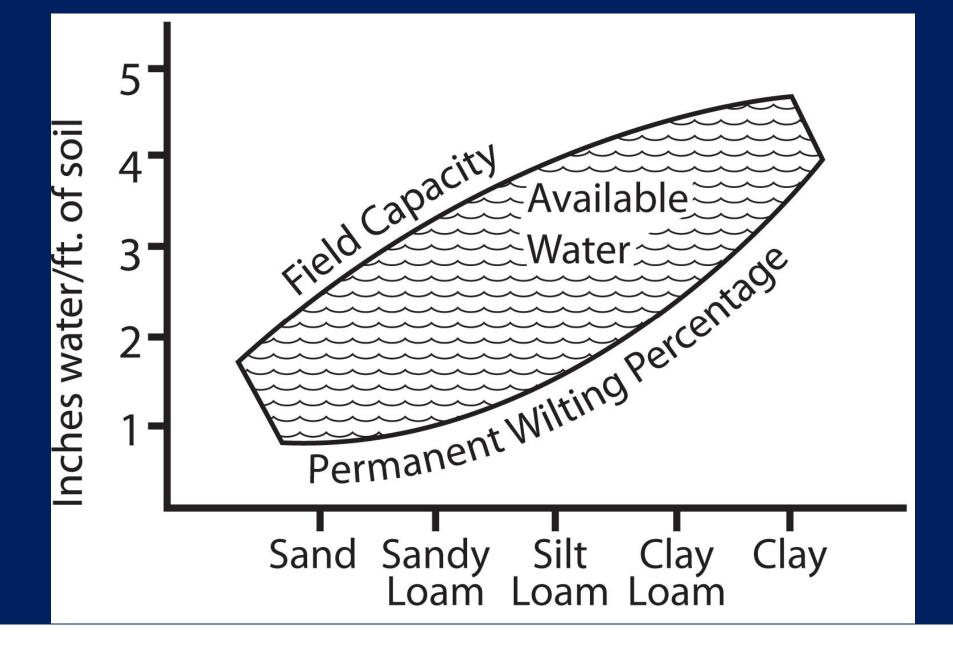

Climate

- Relief
- Organisms
- Parent material




• Time

5 Soil Components - Ideal Soil

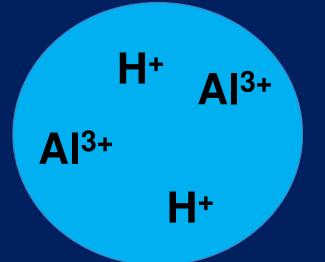


Soil Particle Sizes

Available Water in Soils

Drainage

Soil Perc Test


<u>Steps</u> Dig a hole about 0.5 ft.

- wide and 1 ft deep.
- 2. Place a yardstick in the hole so that one of the inch marks is level with the top of your hole.
- 3. Fill the hole with water and let it completely drain out.
- 4. Fill the hole again and note the time.
- If the water drains at 1-2" per hour, your soil is draining well. Above 4" is too fast and below 1" is too slow. 7

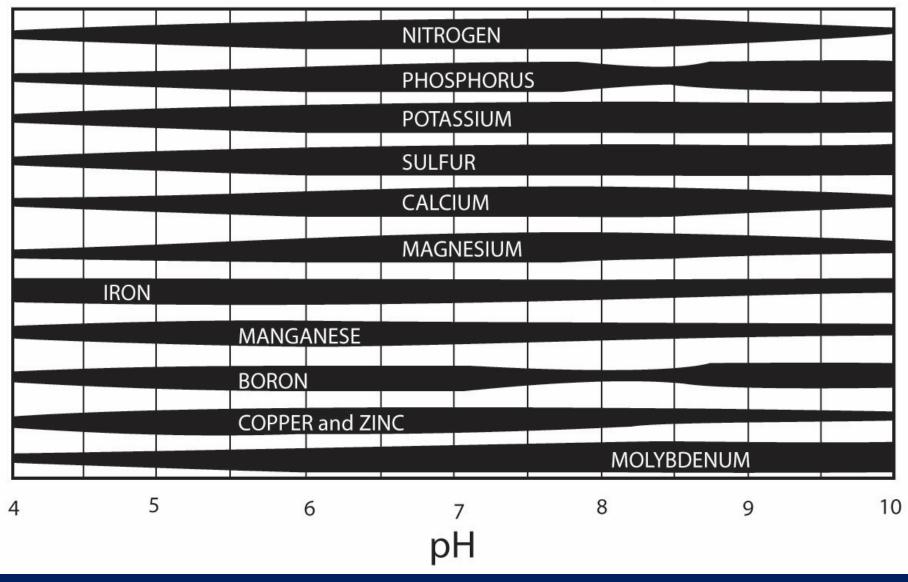
Soil Chemistry and Plant Nutrition

- Soil pH
- Essential Plant Nutrients
- Soil Testing
- Soil Amendments and Fertilizers

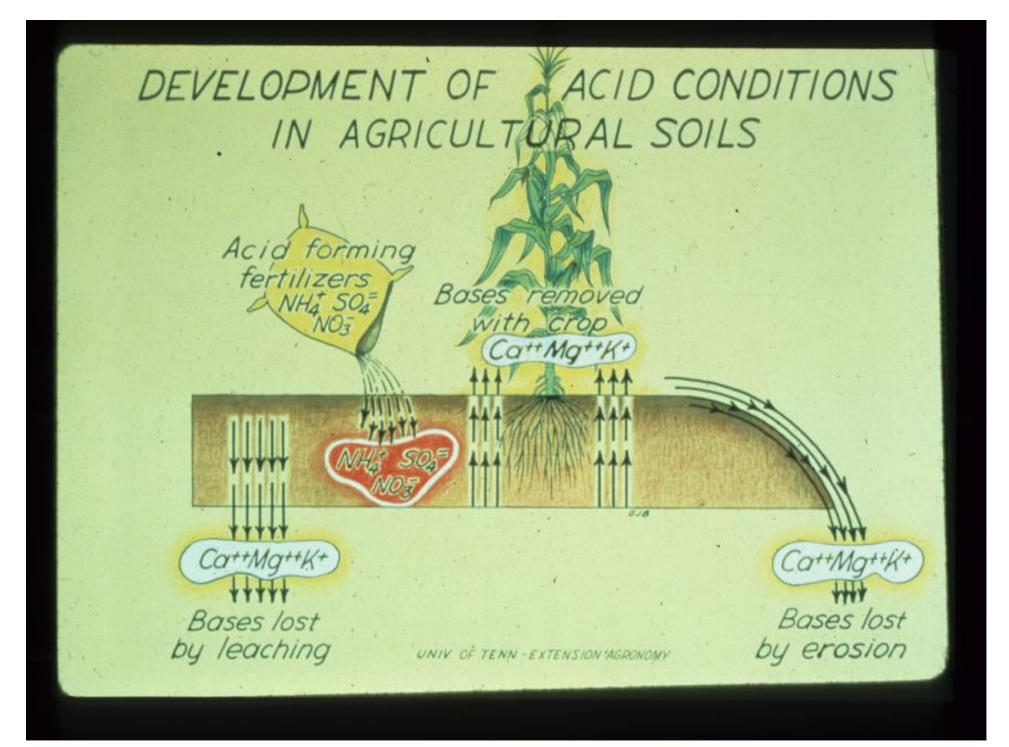
Soil pH

Al³⁺ H⁺ H⁺ Al³⁺

Clay Particle


H+ AI³⁺H+ AI³⁺

 \rightarrow AI(OH)₃ +3H⁺


Soil pH

$NH_4^+ + 2O_2 \xrightarrow{\text{Soil Microbes}} NO_3^- + H_2O + 2H^+$

pH and Nutrient Availability

1/13/2016

Benefits of Lime

 Supply Ca and Mg Enhance microbial activity Enhance nutrient availability Reduce Al and Mn Toxicity

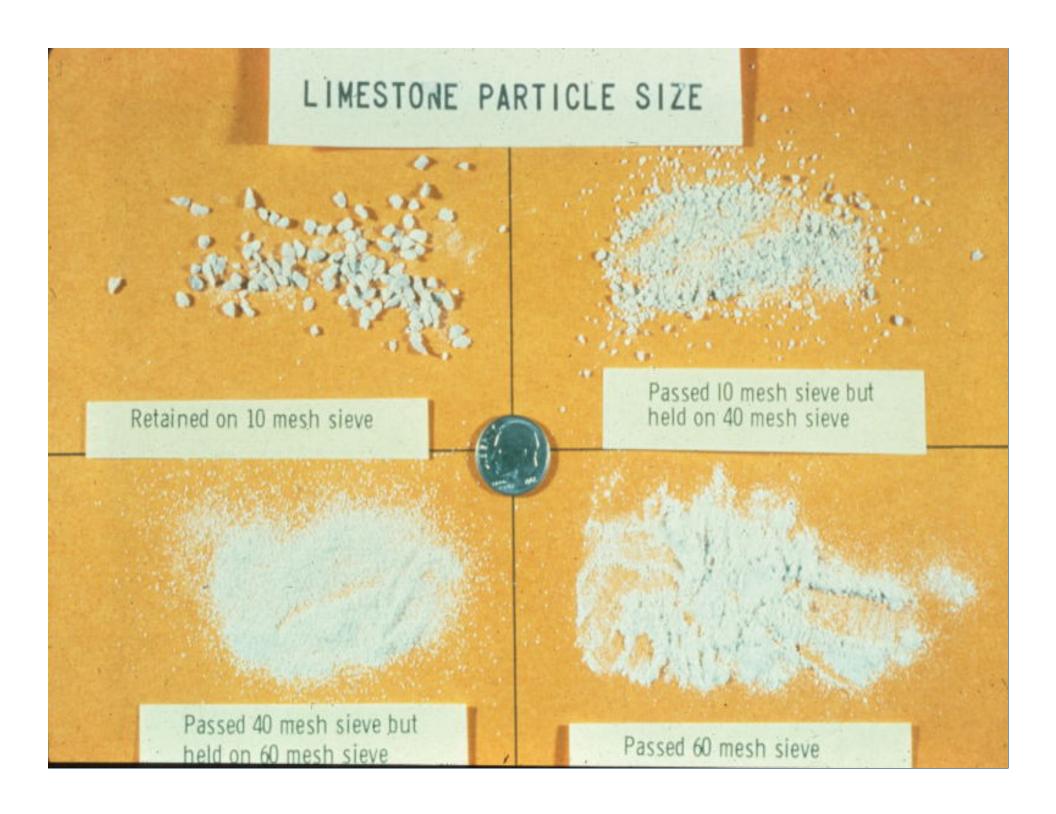
Mn Toxicity from low pH

Low pH and AI toxicity

pH 5.5

Liming Soil Reactions

$CaCO_3 + H_2O \longrightarrow Ca^{2+} + H_2CO_3$ $+ 2H^+$


Liming Materials for pH Adjustments

Material	Composition	Calcium Carbonate Equivalent (%)
Calcium Carbonate	CaCO ₃ (pure)	100*
Calcitic limestone	CaCO ₃	80-100
Dolomitic limestone	CaCO ₃₋ MgCO ₃	95-108
Basic Slag (byproduct)	CaCO ₃₋ CaO- MgO mixture	variable
Burned or Quick lime	CaO (calcium oxide)	150-175
Hydrated or Slaked lime	Ca (OH) ₂ calcium hydroxide	120-135
Marl	CaCO ₃	70-90
Ground Oyster shells	CaCO ₃	90-100
Cement Kiln dusts	Ca Oxides	40-50
Gypsum**	Ca SO4	None
Byproducts and biosolids	variable	Variable to none

*Calcium carbonate equivalent (CCE) is the acid-neutralizing value for a liming material relative to pure calcium carbonate that has a CCE value of 100. This is the standard method of estimating Agricultural lime purity.

** Gypsum does not affect soil pH but is sometimes used as a source of calcium or sulfur.

Savoy and Joines, 2014. UT Extension Publication #PB 1096

Liming Materials for pH Adjustments

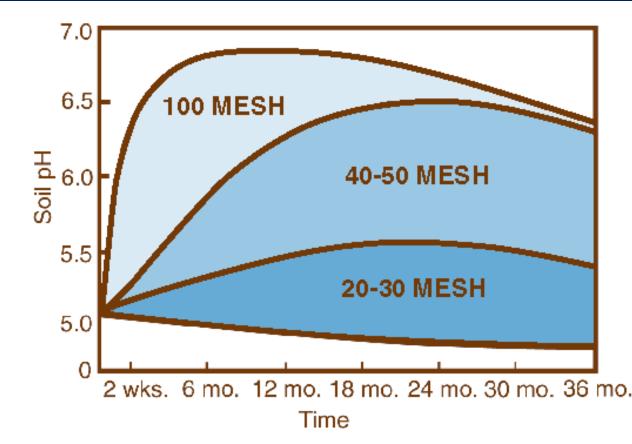


Figure 3. Relation between particle size and rate of change in soil pH when equal amounts of limestone are applied under similar conditions.

Savoy and Joines, 2014

Essential Plant Nutrients

Macronutrients

- Nitrogen
- Phosphorous
- Potassium
- <u>"Secondary"</u>
- Calcium
- Magnesium
- Sulfur

Micronutrients

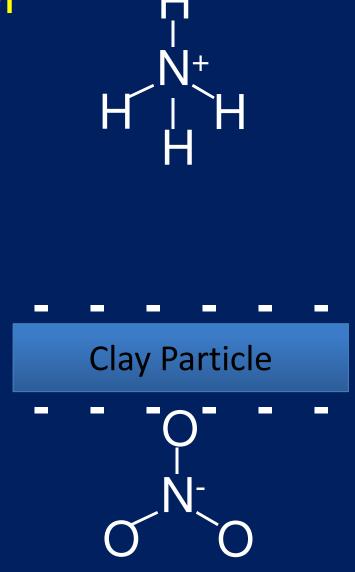
Boron Chlorine Cobalt Copper Iron Manganese Molybdenum Nickel Zinc

Correcting Problems

Macronutrients

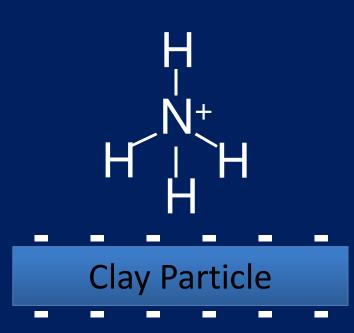
Usually corrected by fertilizer

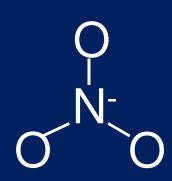
Micronutrients


- Indicate poor soil pH
- Choose a fertilizer with micronutrients and build soil with compost or OM

Nitrogen Basics

- Air is 80% nitrogen gas (N₂)
- Most organisms cannot use nitrogen in this form.
- Plants must secure their nitrogen in "fixed" form
- Incorporated in compounds such as:
 - nitrate ions (NO₃⁻)
 - ammonium (NH₄⁺)
 - urea (NH₂)₂CO


Chemical Forms of Nitrogen


- NO₃⁻ and NH₄⁺ react differently in soil.
- Ammonium (NH₄⁺) is a positively charged ion and is attracted to the negatively charged sites on clay particles.
- It is available to plants but held tightly enough to prevent leaching.

Chemical Forms of Nutrients

- Use ammonium form if leaching or denitrification are serious potential problems.
- In subsoils with a high iron oxide content, nitrate is absorbed to some extent.

Nitrogen Sources

- Quick Release
 - Readily dissolve in water
 - Immediately plant available
 - Interval between application and visual response three to five days
- Slow Release
 - Dissolve less rapidly
 - Breakdown over days to months
 - More expensive

Soils and N Fertilization Issues

Denitrification

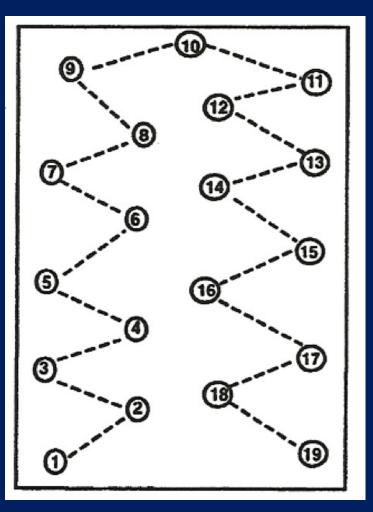
Prevention: Lighter, more frequent N application

Volatilization

 Prevention: Apply water after applying urea or NH₄⁺

- Leaching
 - Prevention: Don't overapply

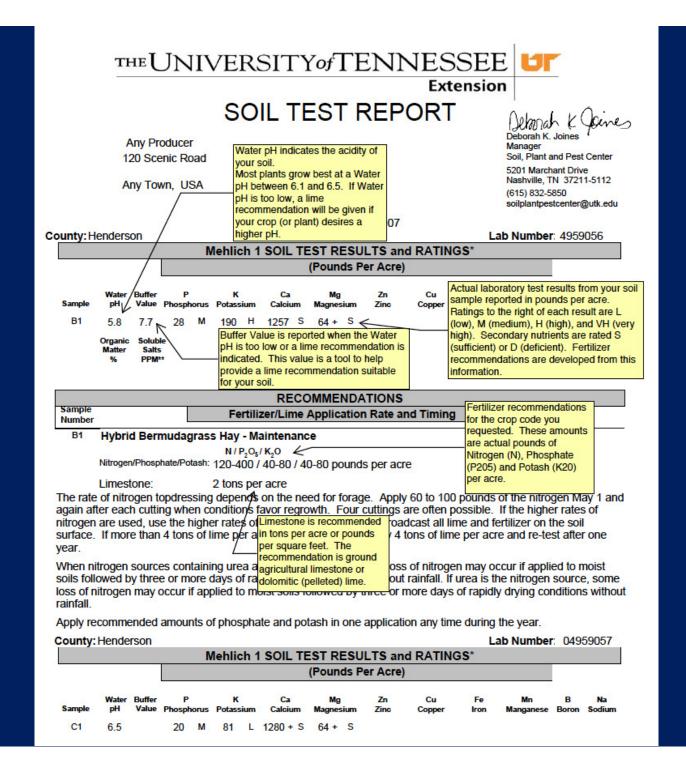
Soil Testing

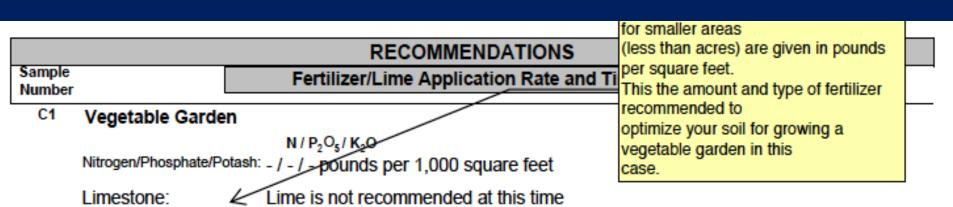

Taking samples and interpreting the results

 Determines the need for lime and/or fertilizer

 Quantifies how much to apply

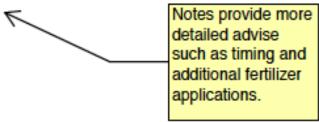
How to Take a Soil Test


- Determine the area to be sampled
- Have the proper tools
- Sample to the proper depth (0-6")
- Take enough subsamples
- Properly mix subsamples into one composite sample



Soil, Plant and Pest Center Fee Schedule

Effective July 2014


Soil Analysis	Basic (pH, Buffer pH, Phosphorus, Potassium, Calcium, Magnesium (M1))					
,	Basic Plus (pH, Buffer pH, Phosphorus, Potassium, Calcium, Magnesium, Ca, Mg, Zn, Mn, Fe, Cu, Na, and B)					
	Zinc, Manganese, Iron, Boron, Copper, Sodium	\$3.00 each				
	Organic Matter (combustion)	\$6.00				
	Soluble Salts	\$4.00				
	Sulfur-SO₄ (Ammonium Acetate extraction)	\$5.00				
	Nitrate-N (PSNT)	\$5.00				
	Carbon:Nitrogen Ratio	\$10.00				
	Container Media -Saturated Paste Extract-(pH, Phosphorus, Potassium, Ca, Mg, Ammonium and Nitrate Nitrogen, Soluble Salts)					
	Hoffer 21" Soil Sampling Probe-additional charges apply for shipping	\$48.00				
	Particle Size Analysis- % Sand, %Silt, % Clay (Hydrometer Method)	\$14.00				

Broadcast 25 lbs. 6-12-12 per 1000 sq. ft. before planting.

Apply as a sidedressing 1-1.5 lbs. of ammonium nitrate(34-0-0)per 100 ft. row as follows: cucumbers, cantaloupe, pumpkins, squash and watermelon when vines are 1 foot long; tomatoes, pepper and eggplant when first fruits are 1 inch or more in diameter; sweet corn when 12-18 inches tall; okra after first picking; lettuce 3-4 weeks after seeding; broccoli, cabbage, cauliflower and brussel sprouts 3-4 weeks after transplanting. For turnip greens, spinach, collards, kale and mustard use 2-3 lbs. per 100 ft. row.

- Page 2

*Ratings: Indicates relative availability of nutrients to plants. (See back of this form for detailed explanation.)

**PPM = Parts per Million

If you have questions about these recommendations, contact your County Extension office.

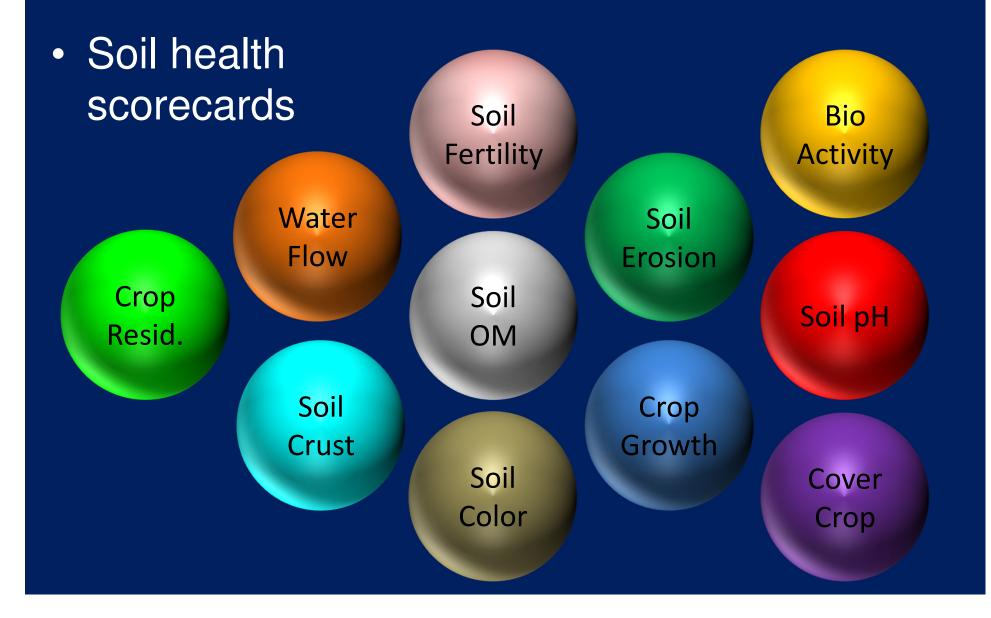
Visit our web site at http://soilplantandpest.utk.edu for additional information.

http://soilplantandpest.utk.edu

Why soil health?

Identify constraints
Monitor changes
Build equity

Dr. Abbey Wick, North Dakota State University


How to measure soil health

General field observations
 Field indicators
 Comprehensive soil tests

General field observations

How is your health?

Aggregates

Slake test

Dr. Abbey Wick, North Dakota State University

Soil crusting, ponding, runoff and erosion

Soil tilth and hardness

Soil organisms

USDA IS AN EQUAL OPPORTUNITY PROVIDER AND EMPLOYER.

WANT MORI

SOIL SECRETS

THERE ARE MORE SOIL MICROORGANISMS IN A TEASPOON OF HEALTHY SOIL THAN THERE ARE PEOPLE ON THE EAR

MILLIONS OF SPECIES AND BILLIONS OF ORGANISMS - BACTERIA, ALGAE, MICROSCOPIC INSECTS, EARTHWORMS, BEETLES, ANTS, MITES, FUNGI AND MORE — REPRESENT THE GREATEST CONCENTRATION OF BIOMASS ANYWHERE ON THE PLANET! MICROBES, WHICH MAKE UP ONLY ONE HALF OF ONE PERCENT OF THE TOTAL SOIL MASS, ARE THE YEASTS, ALGAE, PROTOZOA, BACTERIA, NEMATODES, AND FUNGI THAT PROCESS ORGANIC MATTER INTO RICH, DARK, STABLE HUMUS IN THE SOIL.

CHECK OUT WWW.NRCS.USDA.GOV

Root development

Dr. Abbey Wick, North Dakota State University

Nutrient deficiency symptoms

Normal

Comprehensive soil tests

Cornell Soil Health Test

Package \$50 - \$140 per sample

Individual tests \$15-25 per sample

Test Results					
Indicator		Value	Rating	Constraint	
	Available Water Capacity	0.14	53		
sical	Surface Hardness	240	22	Rooting, Water Transmission	
Physical	Subsurface Hardness	310	53		
	Aggregate Stability 56		47		
_	Organic Matter	3.3	55		
Biological	ACE Soil Protein Index	5.8	25	Organic Matter Quality, Organic N Storage, N Mineralization	
Biol	Respiration	0.37	26	Soil Microbial Abundance and Activity	
	Active Carbon 366		28	Energy Source for Soil Biota	
_	pH	6.9	100		
Chemical	Phosphorus	7.5	100		
Che	Potassium 65		91		
Minor Elements Mg 213 Fe 13.7 Ma: 7.8 Za: 1.4			100		
	Overall Quality Score			Medium	

http://soilhealth.cals.cornell.edu/index.htm

Comprehensive soil tests

Midwest Labs

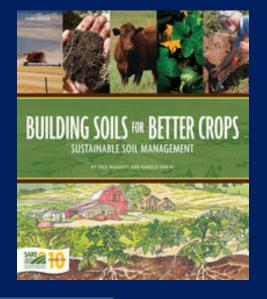
OIL HEALTH ASSESSMENT

ANALYTICAL LABORATORY FINDINGS				ORY FIND	NGS	SOIL HEALTH CALCULATION	
SAMPLE IDENTIFICATION 1							
LABORATORY NUMBER 2		26605	562				
ANALYTE	UNITS	RESULTS	LOW	MEDIUM	OPTIMUM	VERY HIGH	0 50
H3A EXTRACTION							The H3A Soil Extractant was developed by Haney*. This extract is designed to mimic
NITRATE-N	ppm	1.0					organic acids produced by living plant root systems. These organic acids
AMMONIACAL-N	ppm	2.0					increase nutrient availability in the root zone.
ORTHOPHOSPHATE-P PHOSPHORUS	ppm	2.0					The Water Soluble Extract provides a snapshot of nutrients that are immediately
POTASSIUM	ppm ppm	7 59					available to the plants.
MAGNESSIUM	ppm	59					The CO ₂ Burst test is very good indicator of soil health. This test measures the
CALCIUM	mag	147					amount of CO ₂ naturally released from the soil due to the activity of the soil microbes through microbial respiration. This test is very dependent on the amount of carbon
SODIUM	ppm	17					that is available to the soil microbes and the form that the carbon is in. As the
IRON	ppm	46					available carbon increases in your soil the Microbial respiration will increase.
ALUMINUM	ppm	83					Organic Carbon is the available total water extractable organic carbon from your soil.
WATER SOLUBLE							This pool of carbon is roughly 80 times smaller than the Soil Organic Matter. The
NITRATE-N	ppm	1					organic carbon pool reflects the energy/food source that is driving the soil microbes.
AMMONIACAL-N	ppm	2.0	_				
ORTHOPHOSPHATE-P	ppm	1.0					The Organic Nitrogen pool is replenished by fresh plant residues, manure, composts, and dving soil microbes.
CARBON	ppm	370.0 31.0					and dying son microbes.
TKN	ppm	31.0					The Organic C/N ratio is a critical component of the nutrient cycle. A soil C/N ratio
1 DAY CO ₂ C BURST		134.11					above 20 generally indicates that Nitrogen will be tied up and not available to plants. The ideal range for the Organic C/N ratio will be from 8:1 to 15:1.
ORGANIC CARBON	ppm	370.0					The Soil Health Calculation uses the CO ₂ Burst, Organic Carbon, Organic Nitrogen, and the C/N ratio to generate the soil health number. This calculation looks at the balance
ORGANIC NITROGEN	ppm	29.0					of soil carbon and nitrogen and their relationship to microbial activity. This number
ORGANIC C/N RATIO		12.8					represents the overall health of your system. Soil values will range from
ADDITIONAL NITRO	DDITIONAL NITROGEN CREDIT IDENTIFIED VIA HANEY TEST: 57 lbs/A					0 to 50. A soil with a value below 7 would be considered low. You want to see this number increase as you make changes and adjustments. Keeping track of this number will allow you to gauge the effects of your management practices over time.	

\$75/sample, not based on soil physical properties

Comprehensive soil tests

Other options


Soil Quality Kit NRCS

Now that I know what's wrom what do I do about it? Reduce tillage Avoid soil compaction Grow cover crops Use better crop rotations Apply organic amendments Apply inorganic amendments

For more information

Building Soils for Better Crops www.sare.org

Jason de Koff jdekoff@tnstate.edu 615-963-4929 Twitter: @TSUBioenergy