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Nearness to Local Subspace Algorithm for
Subspace and Motion Segmentation

Akram Aldroubi and Ali Sekmen, Member, IEEE

Abstract—This letter presents a clustering algorithm for high di-
mensional data that comes from a union of lower dimensional sub-
spaces of equal and known dimensions. The algorithm estimates a
local subspace for each data point, and computes the distances be-
tween the local subspaces and the points to convert the problem to a
one-dimensional data clustering problem. The algorithm is reliable
in the presence of noise, and applied to the Hopkins 155 Dataset,
it generates the best results to date for motion segmentation. The
two motion, three motion, and overall segmentation rates for the
video sequences are 99.43%, 98.69%, and 99.24%, respectively.

Index Terms—Similarity matrix, spectral clustering, subspace
segmentation, unions of subspaces.

I. INTRODUCTION

I N many engineering and mathematics applications, data
lives in a union of low dimensional subspaces [1]–[4]. For

instance, the set of all two dimensional images of a given face
, obtained under different illuminations and facial positions,
can be modeled as a set of vectors that belongs to a low dimen-
sional subspace living in a higher dimensional space [5],
[6]. A set of such images from different faces is then a union

, where is an indexing set. Similar nonlinear
models arise in sampling theory where is replaced by an
infinite dimensional Hilbert space , e.g., [1], [7].
The problem of subspace clustering is to find a model of the
form where is a set of subspaces that is
nearest to a set of data . The model
can then be used to classify the data into classes called
clusters. The number of subspaces, their dimensions, and a
basis for each subspace are to be determined even in presence
of noise, missing data, and outliers. A number of approaches
have been devised to solve the problem above or some of its
special cases. They are based on sparsity methods [8]–[10],
algebraic methods [11], [12], iterative and statistical methods
[2], [3], [13], [14], and spectral clustering methods [15]–[18].
Motion segmentation is a special case of the general subspace

segmentation problem [19]. Consider a moving affine camera
that captures frames of a scene that contains multiple moving
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rigid objects. It can be shown that the trajectory vectors of all
points of an object in a video belong to a vector subspace in
of dimension no larger than four [20]. Thus, trajectory vectors in
videos can be modeled by a union of subspaces,
where is the number of moving objects.

A. Letter Contributions

This letter presents a clustering algorithm for high dimen-
sional data that are drawn from a union of low dimensional sub-
spaces of equal and known dimensions. The algorithm is appli-
cable to the motion segmentation problem and uses some fun-
damental linear algebra concepts. Some of our ideas are sim-
ilar to those of Yan and Pollefeys [18]. However, our algorithm
differs from theirs fundamentally. Yan and Pollefeys’ method
estimate a subspace for each vector (i.e., trajectory vector)
, and then computes the principle angles between those sub-

spaces as an affinity measure. In our work, we also estimate a
subspace for each point, however, these local subspaces are used
differently. They are used to compute the distance between each
point to the local subspace for the data point . In their
method, an exponential function for affinity of two points
and is used, and this exponential function depends on the
principle angles between the subspaces and that are as-
sociated with and , respectively. In our case, the affinity
measure is different. We first find the distance between and
and then apply a threshold, computed from the data, to obtain

a binary similarity matrix for all data points. The method of Yan
and Pollefeys uses spectral clustering on the normalized graph
Laplacian matrix of the similarity matrix they propose. How-
ever, our approach does not use the spectral clustering on the
normalized graph Laplacian of our similarity matrix. Instead,
our constructed binary similarity matrix converts our original
data clustering problem to a simpler clustering of data drawn
from 1-dimensional subspaces.
Our algorithm is reliable in the presence of noise, and applied

to the Hopkins 155 Dataset, it generates the best results to date
for motion segmentation.
Many of the subspace segmentation algorithms use SVD to

represent the data matrix as and then replace
with the first rows of , where is the effective rank of .
This letter provides a formal justification for this in Proposition
1.

II. NEARNESS TO LOCAL SUBSPACE APPROACH
In this section, we develop a specialized algorithm for sub-

space segmentation and data clustering when the dimensions
of the subspaces are equal and known. First, a local subspace
is estimated for each data point. Then, the distances between
the local subpaces and points are computed and a distance ma-
trix is generated. This is followed by construction of a binary
similarity matrix by applying a data-driven threshold to the dis-
tance matrix. Finally, the segmentation problem is converted to
a one-dimensional data clustering problem.
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A. Algorithm for Subspace Segmentation for Subspaces of
Equal and Known Dimensions

The algorithm for subspace segmentation is given in Algo-
rithm 1. We assume that the subspaces have dimension (for
rigid motion segmentation, ). The details of the various
steps are as follows.

Algorithm 1 Subspace Segmentation

Require: The data matrix whose columns are drawn
from subspaces of dimension

Ensure: Clustering of the feature points.

1: Compute the SVD of as in (II.1).

2: Estimate the rank of (denoted by ) if it is not known.

3: Compute consisting of the first rows of .

4: Normalize the columns of .

5: Replace the data matrix with .

6: Find the angle between the column vectors of and
represent it as a matrix. {i.e., .}

7: Sort the angles and find the closest neighbors of column
vector.

8: for all Column vector of do

9: Find the local subspace for the set consisting of and
neighbors (see (II.2)). {Theoretically, is at least . We
can use the least square approximation for the subspace (see
the section Local Subspace Estimation). Let denote the
matrix whose columns form an orthonormal bases for the local
subspace associated with .}

10: end for

11: for to N do

12: for to N do

13: define

14: end for

15: end for {Build the distance matrix}

16: Sort the entries of the matrix from smallest to
highest values into the vector and set the threshold to the
value of the entry of the sorted and normalized vector ,
where is such that is minimized, and where

is the characteristic function of the discrete set .

17: Construct a similarity matrix by setting all entries of
less than threshold to 1 and by setting all other entries to 0.
{Build the binary similarity matrix}

18: Normalize the rows of using -norm.

19: Perform SVD .

20: Cluster the columns of using k-means.
is the projection on to the span of .

Dimensionality Reduction and Normalization: Let be an
data matrix whose columns are drawn from a union

of subspaces of dimensions at most , possibly perturbed by
noise. In order to reduce the dimensionality of the problem, we
compute the SVD of

(II.1)

where is an matrix,
is an matrix, and is an diagonal matrix with di-
agonal entries , where . To estimate
the effective rank of , one can use the modal selection algo-
rithm [18], [21] to estimate the rank if it is not known. We can
now replace the data matrix with the matrix that con-
sists of the first rows of (thereby reducing the dimension-
ality of data). This step is justified by the following proposition
which is used to validate that a data matrix whose columns
represent data points can be replaced with a lower rank matrix
after computing its SVD (i.e. ). It can be para-
phrased by saying that for any matrices , a cluster of the
columns of is also a cluster of the columns of . A
cluster of however is not necessarily a cluster , unless
has full rank:
Proposition 1: Let and be and matrices.

Let . Assume .
1) If then .
2) If is full row rank (thus, ) then

Proof: It is a straightforward application of linear
algebra.
Also, [11] discusses the segmentation preserving projections

and states that the number of subspaces and their dimensions
are preserved by random projections, except for a zero measure
set of projections. It should also be noted that this step reduces
additive noise as well, especially in the case of light-tailed noise,
e.g., Gaussian noise. Dimensionality reduction corresponds to
Steps 1, 2, and 3 in Algorithm 1.
Another type of data reduction is normalization. Specifically,

the columns of are normalized to lie on the unit sphere
. This is because by projecting the subspace on the unit

sphere, we effectively reduce the dimensionality of the data by
one.Moreover, the normalization gives equal contribution of the
data matrix columns to the description of the subspaces. Note
that the normalization can be done by using norms of the
columns of . This normalization procedure corresponds to
Steps 4 and 5 in Algorithm 1.
Local Subspace Estimation: The trajectory vectors that are

close to each other are likely to belong to the same subspace.
For this reason, we estimate a local subspace for each data point
using its closest neighbors. This can be done in different ways.
For example, if the -norm is used for normalization, we can
find the angles between the trajectories, i.e., we can compute
the matrix . Then we can sort the angles
and find the closest neighbors of each point. If we use -norm
for normalization, we can generate a distance matrix

and then sort each column of the distance ma-
trix to find the neighbors of each , which is the column
of . Once the distance matrix between the points is gener-
ated, we can find, for each point , a set of points

consisting of and its closest neighbors.
Then we generate a d-dimensional subspace that is nearest (in
the least square sense) to the data . This is ac-
complished by using SVD

(II.2)
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Let denote the matrix of the first columns of associated
with . Then, the column space is the -dimensional
subspace nearest to . Local subspace estima-
tion corresponds to Steps 6 to 10 in Algorithm 1.
Construction of Binary Similarity Matrix: So far, we have as-

sociated a local subspace to each point . Ideally, the points
and only those points that belong to the same subspace as
should have zero distance from . This suggests computing the
distance of each point to the local subspace and forming
a distance matrix .
The distance matrix is generated as

.
A convenient choice of is 2. Note that as decreases, the

probability of having on the same subspace as increases.
Moreover, for , is the Euclidean distance
of to the subspace associated with . Since we are not in
the ideal case, a point that belongs to the same subspace as
may have non-zero distance to . However, this distance is

likely to be small compared to the distance between and
if and do not belong to the same subspace. This suggests
that we compute a threshold that will distinguish between these
two cases and transform the distance matrix into a binary matrix
in which a zero in the entry means and are likely to
belong to the same subspace, whereas entry of one means
and are not likely to belong to the same subspace. To

do this, we convert the distance matrix into
a binary similarity matrix . This is done by applying
a data-driven thresholding as follows:
1) Create a vector that contains the sorted entries of
from smallest to highest values. Scale and offset so that
its smallest value is zero and its largest value is one.

2) Set the threshold to the value of the entry of the
sorted vector , where is such that is
minimized, andwhere is the characteristic function
of the discrete set . If the number of points in each
subspace are approximately equal, then we would expect
about points in each subspace, and we would expect

small entries (zero entries ideally). However, this
may not be the case in general. For this reason, we compute
the data-driven threshold that distinguishes the small en-
tries from the large entries.

3) Create a similarity matrix from such that all entries of
less than the threshold are set to 1 and the others are

set to 0.
The construction of binary similary corresponds to Steps 11 to
17 in Algorithm 1. In [18], Yan and Pollofeys uses chordal dis-
tance between the subspaces and as a measure of
the distance between points and

(II.3)

where are the principle angles between -dimensional
local subspaces and with . In this ap-
proach, the distance between any pairs of points from and
is the same. We find distances between points and local sub-

spaces and our approach distinguishes different points from the
same subspace. To see this, let , ,
where the columns of form an orthonormal basis for .
Thus for some with . Let form an

Fig. 1. Linear modeling for in the ideal noiseless case.

orthonormal basis for , then the Euclidian distance from to
squared is given by

where is the SVD for and . Thus, using
the relation between principle angles and singular
values, we get

(II.4)

Hence, our approach discriminates distances from points in to
subspace . We also have .
Using (II.4), we get . Assuming a uni-
form distribution of samples from and , can be approx-
imated by a linear function depicted in Fig. 1. This is only an
approximation that depends on and . The exact function
will not be linear and will depend on all the angles. The goal is
to find the threshold at the jump discontinuity from 0 to .
Our method minimizes the highlighted area. Under this model,
a simple computation shows that our data driven thresholding
algorithm selects the correct threshold if ,
e.g., if . In other situations, our algorithm overshoots
in estimating the threshold index depending on and .
Segmentation: The last step is to use the similarity matrix

to segment the data. To do this, we first normalize the rows of
using -norm, i.e., , where is a diagonal matrix

. is related to the random walk Laplacian
( ). Other normalizations are also possible for
, however, -normalization brings outliers closer to the

cluster clouds (distances of outliers decrease monotonically as
decreases to 1). This is due to the geometry of the ball. Since
SVD (which will be used next) is associated with minimiza-
tion it is sensitive to outliers. Therefore normalization works
best when SVD is used. Observe that the initial data segmenta-
tion problem has now been converted to segmentation of 1-di-
mensional subspaces from the rows of . This is because, in the
ideal case, from the construction of , if and are in the
same subspace, the and rows of are equal. Since there
are subspaces, then there will be 1-dimensional subspaces.
Now, the problem is again a subspace segmentation problem,
but this time the data matrix is with each row as a data point.
Also, each subspace is 1-dimensional and there are subspaces.
Therefore, we can apply SVD again to obtain .
Using Proposition 1, it can be shown that can replace
and we cluster the columns of , which is the pro-

jection of on to the span of . Since the problem is only
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TABLE I
% SEGMENTATION ERRORS FOR SEQUENCES WITH TWO AND THREE MOTIONS

TABLE II
% COMPARISON OF THE DATA DRIVEN THRESHOLD

INDEX WITH OTHER CHOICES

TABLE III
% SEGMENTATION ERRORS—NLS ALGORITHM FOR VARIOUS

TABLE IV
% SEGMENTATION ERRORS FOR LSA WITH VARIOUS PARAMETERS

segmentation of subspaces of dimension 1, we can use any tra-
ditional segmentation algorithm such as k-means to cluster the
data points. The segmentation corresponds to Steps 18 to 20 in
Algorithm 1.

III. EXPERIMENTAL RESULTS

Table I displays some of the experimental results for the Hop-
kins 155 Dataset [12]. Our Nearness to Local Subspace (NLS)
approach have been compared with: (1) GPCA, (2) RANSAC,
(3) Local Subspace Affinity (LSA), (4) MLS, (5) Agglomera-
tive Lossy Compression, and (6) Sparse Subspace Clustering
(SSC). An evaluation of those algorithms is presented in [15]
with a minor error (the listing of error as 1.42% for articulated
three motions instead of 1.60%). SSC-B and SSC-N correspond
to Bernoulli and Normal random projections [15]. Table I used
the number of neighbors . Since each point is drawn from
a 4-dimensional subspace, aminimumof 3 neighbors are needed
to fit a local subspace for each point. Using the same assumption
as the algorithms that we compare with, we take the rank of the
data matrix to be 8 for two motions and 12 for three motions.
NLS has 0.76% misclassification rate compared to 1.24% of the
next best algorithm. Table II shows the performance of the data
driven threshold index compared to various other possible
thresholds. Table III displays the robustness of the algorithm
with respect to the number of neighbors . Table IV displays
the increase in the performance of the original LSA algorithm
when our distance/similarity and segmentation techniques are
applied separately. Both of them improves the performance of
the algorithm, however, the new distance and similarity combi-
nation contributes more than the new segmentation technique.
Recently, the Low-Rank Representation (LRR) in [9] was ap-

plied to the Hopkins 155 Datasets and it generated an error rate
of 3.16%. The authors state that this error rate can be reduced
to 0.87% by using a variation of LRR with some additional ad-
justment of a certain parameter.

IV. CONCLUSIONS

The NLS approach described in this letter works only in the
cases of subspaces of equal and known dimensions. It is based
on the computation of a binary similarity matrix for the data
points. A local subspace is first estimated for each data point.
Then, a distance matrix is generated by computing the distances
between the local subspaces and points. The distance matrix
is converted to the similarity matrix by applying a data-driven
threshold. The problem is then transformed to segmentation of
subspaces of dimension 1. The algorithm was applied to the
Hopkins 155 Dataset and generated the best results to date.
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