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Kaczmarz’s alternating projection method has been widely used for solving mostly over-determined linear system of equations
Ax = b in various fields of engineering, medical imaging, and computational science. Because of its simple iterative nature with
light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A
with highly coherent rows, randomized Kaczmarz algorithm is expected to provide faster convergence as it picks a row for each
iteration at random, based on a certain probability distribution. Since Kaczmarz’s method is a subspace projection method, the
convergence rate for simple Kaczmarz algorithm was developed in terms of subspace angles. This paper provides analyses of simple
and randomized Kaczmarz algorithms and explains the link between them. New versions of randomization are proposed that may
speed up convergence in the presence of nonuniform sampling, which is common in tomography applications. It is anticipated that
proper understanding of sampling and coherence with respect to convergence and noise can improve future systems to reduce the
cumulative radiation exposures to the patient. Quantitative simulations of convergence rates and relative algorithm benchmarks
have been produced to illustrate the effects of measurement coherency and algorithm performance, respectively, under various

conditions in a real-time kernel.

1. Introduction

Kaczmarz (in [1]) introduced an iterative algorithm for
solving a consistent linear system of equations Ax = b with
A € R This method projects the estimate x’ onto a
subspace normal to the row g; at step j + 1 cyclically
with i = j(modM) + 1. The block Kaczmarz algorithm first
groups the rows into matrices A, A,,..., A, and then it
projects the estimate x/ onto the subspace normal to the
subspace spanned by the rows of A; at step j + 1 cyclically
with i = jmodk) + 1. Obviously, the block Kaczmarz is
equivalent to the simple Kaczmarz for k = M. The Kaczmarz
method is a method of alternating projection (MAP) and
it has been widely used in medical imaging as an algebraic
reconstruction technique (ART) [2, 3] due to its simplicity
and light computation. Strohmer and Vershynin [4] proved
that if a row for each iteration is picked in a random fashion
with probability proportional with £, norm of that row, then
the algorithm converges in expectation exponentially with

a rate that depends on a scaled condition number of A
(not on the number of equations). Needell (in [5]) extended
the work of [4] for noisy linear systems and developed a
bound for convergence to the least square solution for Ax =
b. Needell also developed a randomized Kaczmarz method
that addresses coherence effects [6], and she analyzed the
convergence of randomized block Kaczmarz method [7].
Chen and Powell (in [8]) consider a random measurement
matrix A instead of random selection of measurements.
Galantai (in [9, 10]) provides convergence analysis for block
Kaczmarz method by expanding the convergence analysis
(based on subspace angles) of Deutsch [11]. Brezinski and
Redivo-Zaglia (in [12]) utilizes the work of Galantai for
accelerating convergence of regular Kaczmarz method.

The work of this paper endeavors to make the following
contributions.

(i) Research on regular and randomized Kaczmarz
methods appears disconnected in the literature. Even
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though convergence rates have been studied sepa-
rately, the link between them has not been explored
sufficiently.

(ii) A new randomization technique based on subspace
angles has been developed which indicates an advan-
tage with coherent data measurements.

(iii) A further method is introduced which orthogonal-
izes the subspace blocks in order to mitigate the
coherency. Convergence is consistent with statistical
expectations from theory and simulations.

(iv) The effects of measurement coherence are observed in
the literature and illustrated in our simulations with
norm and angle based iteration randomization.

(v) A broader review and mathematical analysis of com-
mon methods is presented from both statistical and
deterministic perspectives.

(vi) Numerical simulations are provided to illustrate the
typical effects of nonuniform sampling coherency
upon convergence of Kaczmarz methods.

(vii) Kaczmarz inversions versus matrix size were per-
formed to allow comparison of the relative conver-
gence rates of various well-known methods using
typical hardware and software. The results show rela-
tive computational complexities of common methods
for simple and randomized Kaczmarz, including the
randomized Kaczmarz orthogonal block.

2. Methods and Materials

Data inversion and reconstruction in computed tomography
is most often based upon the iterative Kaczmarz algorithm
due to the O(N?) performance. First, in this section, given
the number of methods currently in the literature, a broad
but extensive overview of the mathematical theory for the
more common methods is provided, such as simple, block,
and randomized Kaczmarz. Where possible, the convergence
results are compared from both random and deterministic
perspectives to demonstrate similar results and convergence
analysis methods. The concept of subspace projections is
reviewed and the connection to iteration is noted.

Next, two new methods are proposed and analyzed in
the context of coherent data measurements. These methods
allow the algorithm to adapt to the changing environment
of the sampling measurement system, in order to mitigate
coherency.

Simulated methods for data acquisition under uniform
and nonuniform X-ray beam measurements are included,
and convergence results are computed comparing simple and
random row selection methods.

Lastly, after the algorithm methods section, a brief
overview of the methods used to obtain the complexity esti-
mates is presented. Methods include using common software
and hardware under dedicated kernel conditions. Simulations
for Kaczmarz convergence and complexity were performed
using Octave software.
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2.1. Convergence of Regular Block Kaczmarz Method. Let x*
be the solution of consistent Ax = b, where A € R™*M is full
column rank. Let A be row-partitionedas {A,..., A;} where
A; € RM*M Then, the simple block Kaczmarz update is as
follows:

Xj =X+ AIT (AiAIT)_1 (bi - A,-xj) i = j(modk) + 1,
)
where b is the section of b that corresponds to the rows of A ;.

Note that since A; is full row rank, AT(A;AT)™ is the right
pseudo-inverse of A;. This is equivalent to

x;+ AT (A,A7) 7 (A - Ax)),
(2

|
ol
1l

i1 - X; - x" - A? (A,-Alr)_1 A; (xj - x*).

Note that AT(A;AT)™ A, is the projection matrix for projec-
tion of the range of AT:

»
I

x; = X" = Pour (x - x7), (3)
X1 =X = (1= Pyun) (x-x7),

I (xj - x*).

|
»
|

(4)

For one cycle of the blocks,
X =X = PopuanyPspiiar )+ Poprian) (X =X7). (5)

Note that if A € R is a full column rank with M < N,
then the simple block Kaczmarz update is as follows:

Xj =X+ AI (bi - A,»xj) =X;+ AIAi (x* - xj)
(6)
i = j(modk) + 1,

where A is the pseudo-inverse of A; and AT A; is the orthog-
onal projection onto Sp(A,T). Then, we get the same equation

as (3), and subsequently we get (5),

X —X =X, =X = Pon (x]- - x*). (7)

2.2. Exponential Convergence

Theorem 1. Let x* be the solution of consistent Ax = b, where
A € R™M s full rank. Let A be row-partitioned as {A ...,
A} where A; € RMM and M, + M,, ..., +M, = M. Then,
the simple block Kaczmarz converges exponentially and the
convergence rate depends of the number of blocks.

Proof. By (3) and orthogonal projection,

*

||x- -x §=lixj-x*|l§—|\PSP<A,T>(XJ-—X*)||§~ ®

So,

2
2;

* 2 *
[jer =x"[ < s = ©)
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x;—x" depends on the initial condition X, = x, —x", and this

dependence is scale-invariant. To see this, lete; = x; —x" and
consider cX, where ¢ € R. By (4),
€; (c%y)

e (X)) =P Sp-(AT, )

= Pspe(at, ) Popt(a1y -+ Popr(any€0 (%)

= Pspr(at,) Pprat) - Popran) (c%,) (10)
= Pyt ) Pspr(ary *+* Popr(an€o (%)

=C€in (%)

We will first show that if x, # x*, then [x, —x" |, < [Ix,—x"[,.
By the way of contradiction, assume that x, # x* and [|x; —
x" "2 = "Xo -x" ”2 BY 9),

I -x, @

-x*l, = lIx, — x|, forall 1 <1 < k. By (3),
Pgpary (X — x") =0forall1 <I<k.By(8), wegetx; =X,
forall 1 <[ < k. This implies that PSp(AlT)(Xo —x") =0forall
1<I<k. So,

e = x7; < ey = X7, - <

and therefore |x;

*
Pgypi (anynsp (aTy-nspt(aT) (Ko =X ) = 0,

(12)

Pg,1 a1y (x—x")=0.
Since A is full column rank, we get x, = x", which is a
contradiction. So we know that ||x, — x*[|, < [lx, — x"[|, (for

one full cycle of k-iterations).
By compactness, there exists an € € (0, 1) such that, for all

%, =x,—x" e SN
% - x|, <1-e (13)
By (10) and (13),
X
b=l = Il (25 ) < @ -0l
b ke L

e = x7[l, < (=€) [ = x7],.

Now consider iteration for g cycles:
g =x"[, = (1= )7 xo - %71,
- (15)
[ =], = [0 -0 o -,

Therefore, we conclude that the exponential decay depends
on the number of blocks k. Note that k = M for regular
simple Kaczmarz and the exponential decay depends on the
number of rows in this case. The randomized Kaczmarz
algorithm proposed by Strohmer and Vershynin [4] avoids
this and it converges in expectation as [E”XP -x" II§ < (1-
K(A)?)Plx, — x*[%, where x(A) = |AlzllAT], is the scaled
condition number of matrix A with A" is the pseudoinverse
of A. O

2.3. Iterative Subspace Projection Approach. We can use the
following theorem (in [9, 11]) to show the convergence of
regular block Kaczmarz method.

Theorem 2. Let M;, M,,.. Mk be closed subspaces of thereal

Hilbert space H. Let M = ﬂ \M; and Py (i = 1,...,k) be
orthogonal projection on M;. Yhen for each x € H,
qle (PM PMk X -PMI) X = Pyx, (16)

where Py is the orthogonal intersection projection.

The block Kaczmarz is an alternating projection method
with M, = Sp*(AT),..., M, = Sp*(A}). Also,

PMI = PSpJ'(AT)’ e
M =Sp* (A7)n

Since A is full column rank, Sp*(AT)
After g cycles,

» Prge=spt a7y

- nSp*t(A}) = Spt (AT).
= {0} and P, = {0}.

17)

Py ) (xg-xx).  (18)

*

=X .

Xgk ~ X = (PMkPMk—l v
By Theorem 2, lim, _, ., X, — x* = 0 and lim
Galdntai in [9] gives a bound for [[x
principle angles between M;’s.

q—>ooqu
* .
— x|, in terms of

2.4. Bound for Block Kaczmarz in Terms of Principle Angles.
Smith et al. established the following convergence theorem
for applying the alternating projection method in tomogra-
phy [9, 13].

Theorem 3. Let M, M,,... Mk be closed subspaces of the
real Hilbert space H. Let M = N —1M and Py (i=1,...,k)be
orthogonal projection on M; (PM is the orthogonal mtersectzon
projection). Let 0; = a(M M,); then, for each x € H
and integer q > 1,

||(PMkPMk_1 Py )'x- PMx"j

1 ]+1

(19)
(1 - ] 1sm )q ||x— PMx"; s

where Py is the orthogonal intersection projection.

In the special case of the block Kaczmarz, we have H =

RY, M, = Sp*(A]),...,M, = Sp(A}). Also, Py, =
Poyiary - Py, = Popran and M= Sp*(A7) n - n
Sp* (A ) = SpL(AT). Since A is full column rank, SpL(AT) =

{0} and P, = {0}. Therefore, after g cycles,

g =x[, = | (P Pas B )’
qu X 2 M " My, M,

(20)
q |12
(1 - ] 1SIn ) ”Xo -X “2 >
where 0 is as defined in Theorem 3. Note that the exponential

decay rate depends on the number of blocks k as shown
below:

NEYONVOE .
l—Hk_lls 26]) ] ||x0—x||§. (21)

[ - x°[; <
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(3) while not converged do

(4) Randomly choose r(i) from {1,...
r(1 <ar(l X )

G) X =x,+ Warm

(6) Setp=p+1

(7) end while

Require: An over-determined linear set of consistent equations Ax = b, where A is M x N matrix and b € RM,

Leta,,...,a, be the rows of A and b; be the jth element of b.
(1) Pick an arbitrary initial approximation x.
(2) Set p = 0.

, M} with probability proportional to ||, 5.

ALGORITHM 1: Randomized Kaczmarz (of [4]).

Gal4ntai in [9] developed another bound (for A € R™*M) by
defining a new matrix X; for each block A; as follows.

Theorem 4. Let x* be the solution of Ax = b for a consistent
linear system with A € R™M. Let A be row-partitioned as
{A,..., A} where A; € RM™ N Let M, = Sp*(AT),..
M, = Sp*(A}) and A;AT = LL" be the Cholesky decompo—
sition ofAiAlT. Define X; = ATL™" and X = [X,,..., X].
Then, for each x € R and integer q > 1,

< [1-dee (X)) - X'
= [ der ()] e, - B-

2.5. Special Case: Simple Kaczmarz for A € R™™, Note that
this section assumes that A € R™. The block Kaczmarz
algorithm is equivalent to the simple Kaczmarz algorithm if
the number of blocks k is equal to the number of rows M.
In this case, A;AT = |la;|2 = LL”. Therefore, L = ||a;], and
LT = 1/lla;ll,- This implies that X; = [a;/[la;|l,]. Then, X €
RMM is defined as

Iy
22)

[ A ] (23)
far," awll,
Assume the matrix A has normalized rows and we pick a row
at each iteration uniformly randomly. Note that this assump-
tion is feasible as scaling a row of A and the corresponding
measurement in b does not change the solution x.

X is the Gram matrix with 0 < det(X'X) <
I, ||§||x2||§ ‘e ||XM||§. Since |x;[l, = 1 and X is full rank, we
have 0 < det(X”X) 1. Using Theorem 4, we get the
following deterministic bound:

(1 - det (XTX))” M]qM Ix - x"[5. (24)

[xgna =x°[, <

Since A is normalized, we get X = AT and therefore

[

5 =

(1 - det (AAT))I/M]qM Ixo - x"[2. (25

Bai and Liu (in [14]) uses the Meany Inequality to develop a
general form of this inequality.

2.6. Randomized Kaczmarz Method. Several methods of ran-
domized Kaczmarz are discussed in this section.

2.7. Randomization Based on Row ¢, Norms Method.
Strohmer and Vershynin (in [4]) developed a randomized
Kaczmarz algorithm that picks a row of A in a random
fashion with probability proportional with €, norm of that
row. They proved that this method has exponential expected
convergence rate. Since the rows are picked based on a
probability distribution generated by the €, norms of the rows
of A, it is clear that scaling some of the equations does not
change the solution set. However, it may drastically change
the order of the rows picked at each iteration. Censor et al.
discuss (in [15]) that this should not be better than the simple
Kaczmarz as picking a row based on its £, norm does not
change the geometry of the problem. Theorem 5 is from [4].

Theorem 5. Letx™ be the solution of Ax = b Then, Algorithm 1
converges to X" in expectation, with the average error

* j < (1 -K (A)_Z)P %o — X*“i, (26)

where k(A) = ||A||F||AT I, is the scaled condition number of
matrix A with A" is the left pseudoinverse of A.

Note that A is a full column matrix (A € R with
rank(A) = N) and therefore we define A" as left pseudoin-
verse of A. We observe that the randomization should work
better than the simple (cyclic) Kaczmarz algorithm for matri-
ces with highly coherent rows (e.g., matrices generated by the
computerized tomography). Since the Kaczmarz algorithm
is based on projections, the convergence will be slow if
the consecutive rows selected are highly coherent (i.e., the
angle between a; and a,,; is small). Picking rows randomly
(not necessarily based on the ¢, norms) makes picking
more incoherent rows possible in each iteration. Therefore,
the randomization may be useful for certain applications
such as medical imaging. Note that matrix A generated by
computerized tomography has coherent and sparse rows due
to physical nature of data collection. In fact, using Theorem 5,
we can develop the following proposition.

Proposition 6. Let Ax = b be a consistent linear system
of equations (A € R™N) and let x, be an arbitrary initial
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(3) Randomly choose f(i) from {1,2,
(4) while not converged do

(5)  Randomly choose g(i) from {1,...,
(6)  Compute x;,; = x; + ((by) — (af(i),xk))/llaf(i)llg)af(,-)
(7)  Compute X;,, = X;,q + ((bg(,) - (ag(i),xk))/nag(i) ||§)ag(,-)
(8)  Set f(i) = g(i)

9) Setk=k+2

(10) end while

Require: An over-determined linear set of consistent equations Ax = b, where A is M x N matrixand b € RM,

Leta,,...,ay be the rows of A and b; be the jth element of b.
(1) Pick an arbitrary initial approximation x,.
(2) Setk =0.

., M} with a uniform distribution.

M7} with probability proportional to 1

2 2 2 2
- ((af(i),ag(i)) /"af(,') ”2”%(,‘)”2) =1-cos ef(i),g(i)

ALGORITHM 2: Randomized Kaczmarz Hyperplane Angles.

approximation to the solution of Ax = b. For k = 1,2,..,,

compute
b <a %)

” a.i) " 2

where r(i) is chosen from the set {1,2, ..., M} at random, with
“any probability distribution.” Let X be the solution of Ax = b
Then,

X

pt1 = Xpt ———— 5

» a,3;)s (27)

* z < (1 -K (B)_z)p %o — x" ||§ , (28)

where k(B) = ||B||F||BT||2 is the scaled condition number of a
matrix B that is obtained by some row-scaling of A.

Proof. This is due to the fact that row-scaling of A (with
scaling of the corresponding b) does not change the geometry
of the problem and we can scale the rows to generate
any probability distribution. In other words, we can obtain
another matrix B from A by scaling its rows in such a way
that picking the rows of B based on the £, norms of the
rows will be equivalent to picking the rows of A based on
the chosen probability distribution. Therefore, clearly, any
randomization of the row selection will have exponential
convergence; however, the rate will depend on the condition
number of another matrix. For example, if we use uniform
distribution, we can then normalize each row to have matrix
B as follows and then pick the rows at random with probabil-
ity proportional to the norms of the rows:

T
B:[La—M] . (29)
lasll,” " landll,

O

2.8. Randomization Based on Subspace Angles Method. Our
approach iterates through the rows of A based on a prob-
ability distribution using the hyperplane (subspace) angles.
Therefore, it is immune to scaling or normalization. This
approach first generates a probability distribution based on
the central angle(s) {9,»,]-} between the hyperplanes (repre-
sented by the rows of Ax = b). Then, it randomly picks

two hyperplanes using this probability distribution. This is
followed by a two-step projection on these hyperplanes (see
Algorithm 2).

2.9. P-Subspaces Method. A new method has been developed
which is intended to better accommodate the coherency of
nonorthogonal data measurements. This next section makes
contributions towards proving the statistical convergence
of the randomized Kaczmarz orthogonal subspace (RKOS)
algorithm. As described in [16], the RKOS initially uses -
norm random hyperplane selection and subsequent projec-
tion into a constructed P-dimensional orthogonal subspace
Sp comprised of an additional P — 1 hyperplanes selected
uniformly at random.

Algorithm 3 uses a recursive method to solve for the pro-
jections into the orthogonal subspace which is constructed
using Gram-Schmidt (GS) procedure. However, a second
approach demonstrates an alternate method of arriving at
similar results, based upon an a closed form matrix for QR
decomposition [17] of projection blocks.

In each of the above cases, vector operations inside the
orthogonal subspace preserve the £-norm and reduce errors
that would normally be induced for coherent nonorthogonal
projections which may be present in the simple Kaczmarz.

2.9.1. Orthogonal Subspaces. A statistical convergence analy-
sis for Randomized Kaczmarz Orthogonal Subspace (RKOS)
method is developed assuming identically and independently
distributed (IID) random variables as vector components of
each row of the measurement matrix A.

(a) Orthogonal Construction. In many problems, M > N and
fast but optimal solutions are needed, often in noisy environ-
ments. In most cases, orthogonal data projection sampling is
not feasible due to the constraints of the measurement system.
The algorithm and procedure for the RKOS method are given
in reference [16] and are intended to construct orthogonal
measurements subspaces (see Algorithm 3).

The general technique is to solve using a constructed
orthogonal basis from a full rank set of linearly independent
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Require: Matrix A € RN fyll-rank consistent measurements subjectto Ax = b, forb € RM,
(1) Set x,, to initial approximation, i = 1
(2) while not converged do

RPxN

matrix A; € comprised of rows {a;, ..., a;p}.

(4)  Perform Gram-Schmidt procedure on A; to obtain the orthonormal set of columns {u; ;...

(3) Select dim(Sp) = P < N distinct linearly independent rows of A relative to random rule. Construct block

>, p}.

LetQ; = {u;,,...,u;p} € RVP

(5) Update x; as follows:
X; = X, + Projg, ) (% — %),
X =X —QQ (x—x;y),
(6)  Compute Q] x iteratively using fa; ...
(7) Updatei=i+1
(8) end while

sa;phAb; s

> b,‘,p}; {lli’l, cees u,’,P}

ALGORITHM 3: P-Subspace Kaczmarz Projections.

measurements in for each subspace in Gram-Schmidt fashion
(18, 19].

The subspace estimation may be computed as P-dimen-
sional subspace projection into the subspace orthonormal
vector basis:

P

Xg, = z (u,x) (30)

I=1

where xg_in Sp C Sy subspace is the P-dimensional solution

approximation which becomes exact for Sp_y forxg, € RN
in the noiseless, self-consistent, case (the u vector with the hat
symbol # indicates unit £2-norm).

(b) Modified Kaczmarz. The standard Kaczmarz equation
is essentially iterative projections into a single subspace of
dimension one; based upon the sampling hyperplanes, these
projections are often oblique, especially in highly-coherent
sampling.

The approach herein is motivated towards constructing
an iterative algorithm based upon Kaczmarz which may
be accelerated while controlling the potential projection
errors and incurring reasonable computational penalty. The
algorithm is simply to add subspaces of larger dimensions.
Let

P

x—xk+1:x—xk—z<ﬁ1,x—xk>ﬁl. (31)
i=1

It is convenient to make a substitution as follows:
Ziyp = X — Xpy1- (32)

Using above substitution and orthonormal condition (It is
worthwhile to note that in the problem setup, a fixed vector
is projected into a randomized P-dimensional subspace,
where algebraic orthogonality was used to obtain (34). In the
this statistical treatment of the same equation, the expecta-
tion of two random unit vectors vanishes for independent
uncorrelated zero mean probability distribution functions,

providing the statistical orthogonality on average satisfying
(34).) (ﬁj, u) = 6j,k, where the Kronecker

0, ifj#k,
Ojk = {1, if j=k, (33)
find the £*-norm squared of z; , ,:
2 2 - 2
lzsnllz = lallz = X @z (34)
1=1

The ensemble average of the above equation (34) yields the
convergence result, which is the main topic of this section.

2.9.2. Convergence for IID Measurement Matrix. Firstly, the
expectation of a single random projection is computed. In
the second step, the terms are summed for the P-dimensional
subspace. Experimental results are included in a latter sec-
tion.

(a) Expectation of 1ID Projections. Consider the expectation
of the £*-norm squared of the projection of fixed vector x €
R™! onto a random subspace basis Up € of dimension P:

£ [Juisl:) G5)

where the matrix basis Up € R™ is comprised of P-columns

of unit vectors u; € R" in a constructed orthogonal basis for

i, —U;=[Uj,....U;\] Ci
o
U, (36)
=—L vje[l,...,P],
ol

where the upper case components U;; represent the (j,i)th
IID random variable component, and normalization constant
C, is to be determined.
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Further noting that complex conjugate (-)* reduces to
transpose (-)" for real components, the £2-norm squared of
the projection expands to

|Ux]; = x"UpUpx. (37)

In the next section, the goal is to find the expected value for
outer product of the projection:

E[x'U;Ujx|] Vjell,...P]. (38)

(b) Unit Vector. The deterministic identity for the magnitude
of a unit vector is well known result for @ € R":

N 2
My (39)

~12
llall; = 5 =
i=1 ”ullz

The following statistical result must apply for the jth column
unit vector:

E[J0;] - E[0]T;] =1
) 1 (40)
=E [UJ.,1 +o+ Uiy o

o

(c) Normalization of Random Unit Vector. Denote 6j as the
jth random variable unit-norm vector associated with a set
of column vectors {U;} ¢, _p comprising a random subspace
matrix Uy,p having IID random variable components U;;.
However, no additional assumptions on the distribution of
the random variables are made at this time, other than IID.
The expectation of both sides of (40) for random vector U;
are found such that

NU%: N [U%
2o 2| .
E[U};
T T
o

Solving above for each unit vector component in this treat-
ment implies a random variable U;; with zero mean and
variance as follows:

2
] _ 2 CD’

%N

E[U7 ;

It VUjje1,..N € f(Uj,i) > (42)

.....

where f(U; ;) is the associated IID probability distribution.

(d) P-Dimensional Random Projection. The next step is to
compute the expectation of the magnitude of the projection
of fixed vector x onto random P-dimensional orthonormal
subspace Up projection term by term. Let & € R” bea column

vector defined as & = U} x and find the £*-norm squared:

2 2, 2 2
el = ) + 05 + -+ ap
) (43)
= ”UE,X"2 = xTUPng,

7
where
2 — 2
& = (8;%)
2
= (uj,lx1 +oeet uj,NxN) (44)
N,N
0 Ykt
= Z =
T L

Let upper case U; denote the kth IID element random (this
is not the same k-variable as the Kaczmarz iteration variable)
variable of the jth column vector U; associated with column
vector uy; let x vector denote a fixed point. Next, take the
expectation of the term over the possible outcomes of U;
random variables. Using the IID assumption, the expected
value for a single projection component preserves terms

squared as follows:

NNU. U, XX NN U, U, XX
ki K ik
Efat] |y 24 ]:Z[E[] ]
2 2
! ik Cs ik Cs
N U2 N 2
-VE Xk Z ik 2
Z 2 2 k
k=1 o o
2 N 2
jik 2 jik 2 (45)
— | 2% =E| = | Ixl;
CH PR
2
1 o 2
= — — Ixl;
C2 N
1 2
=N (Il -

It is now possible to determine the expectation for P-terms of
the projection as

P
P
Ellaly] =E | Yaj | = 5 Ixl3 (46)
j=1

subject to IID constraint on U  where it is further noted that
0’N = C in (42).

(e) Error per Iteration. For a given kth Kaczmarz iteration, the
expectation of the projection of fixed vector x onto the ran-
dom P-dimensional subspace U, is known from above. The
total convergence expectation may then be computed, using a
method similar to Strohmer’s, starting (recall that derivation
of (47) requires orthogonality among the #; subspace basis
vectors) with (47):

P
Izl = Izl ~ X 1Kz 8 (47)
I=1



lE{k+1|Zo,zl ~~~~~ 2} [||Zk+1 "i]

P
= Elkrilzg 2} [”Zkui - Z I(Zk’ ﬁz>|2]

I=1

P
= [E{k+1|zo,zl,...,zk} ["zkui] - [E{k+l\zo,zl,...,zk} |:Z |<Zk’ﬁl>|2] .
1

I=
(48)

We identify the term on the right as

p
Eikitizg 2y} [Z |<Zk>ﬁl>l2:| = Eertizg 2,02, ["UPZk"i]
=1

P
- N % lE{k+1|Zn)zl"“’zk} [“Zklli] ’
(49)

The results from the two equations ((49) and (48)) above may
then be combined to obtain

Bk 1120,2,,02,) [”Zkﬂ“;]

b , (50)
= <1 - N) X IE{k|zo,zl,..4,zk71} [llzk”z] >

where the expectation on the right hand side includes k+1 —
k accounting for the previous iteration. Next, apply induction
to arrive at the expectation for the whole iterative sequence up
to the fSth iteration given that z, = x — x;:

B
Epoi [lzpili] = (1- 1) Jooli vBe123,...
(51)

(f) Asymptotic Convergence. The statistical ensemble average
of the above equation (34) for the fth iteration yields the
convergence result given in (51). These results assume random
variables identically and independently distributed but com-
pare well to others in the literature, such as the convergence
result in Strohmer and Vershynin [20].

The theoretical convergence iterative limit for uniform
random IID sampling was compared to numerical simula-
tions using random solution vector point on a unit sphere.
Equation (52) has an asymptotic form:

Izl

P
= lim [1——] ~ ¢ PPIN,
N

B— o0

(52)

P=dim(Sp), B> 1,2,3,...— keP2P3P,....
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(a) IID Gaussian Unit Vector Image

(b) CT Phantom Image

FIGURE 1: Representative test data.

For comparison, recall the convergence for RK method of

Strohmer for IID measurements with R = N which is
approximately
Efkriiz,) [||Zk+1"§] _ [1 B i]k
ol N o

17F
lim [1——] =N vk»1,2,3,....
k— oo N
Estimated noise bound convergence complexity to € error
is O(N?). Since the value of z, is given, the expectation is
known to be the same.

(g¢) Theory and Simulation. Simulations in [16] compare
theory to Gaussian IID with noise variance added to the mea-
surements with magnitude 3 = 0.05 (about five percent) and
iteration termination at f = 0.05/4 = 0.0125. In the first
problem, the exact solution x is chosen as a random point
on the unit sphere—which is illustrated in Figure 1(a). In a
second problem, a measurement of the standard phantom
using parallel beam measurements is included, which con-
tains coherent measurements.

2.10. Regular Versus Randomized Kaczmarz Method. The
randomized Kaczmarz’s algorithm developed by Strohmer
and Vershynin in [4] has the following convergence in expec-
tation:

[E"xM—x*ZS(l— 12
q 2 K (A)
where k(A) = IIAIIFIIATII2 is the scaled condition number of

matrix A with A" as the left pseudoinverse of A. The bound
for regular Kaczmarz is given in (25). Note that we assume

A € R™™ Now, we need to compare (1 — (1/| Al AT[2))
and (1 — det(AAT))l/ M 1o assess which bound is tighter. Let

M 5
) I-xE G0

0, 20, >+ > 0y > 0 be ordered singular values of A.
Then,
2 1
[, = &
N
o (55)
IAlZ =Y a7
i=1
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Also, note that

1 cosf, -+ cosl,
cos 0, 1 -+ cos 0,
AAT=| . . 66)
cosly cosOyp, - 1

where 6;; denotes the angles between the rows g; and a; of A.
Then,

M M
det (AAT) < HZCOSZGij. (57)

i=1j=1

Note that
M M
[To? () =] (ATA) = det (A"A) = det (4A"); (58)
i=1 i=1

therefore,

M 1/M
[1- det (4aT)]"™ = <1—]‘[a§> )

i=1

Now, (54) and (25) become

2 0'2 e 2
<(1- =M -x"
2 < Zf\fl ‘71'2) "XO b ”2’

o /MM

2

, < <1—Hoi2> ||x0—x*||§.
i=1

2.11. Complexity Measurement Methods. In order to visualize
and assess the relative performance of the well-known com-
mon methods of Kaczmarz, a simple routine was written in
Octave [21] to record the total central processing unit (CPU)
times for each method and variable matrix sizes of interest.
The Linux (tm) kernel was modified to include the real-time
patches for the x86/64 CPU architecture, and the process was
run on a (see the cset in the cpuset package) shielded CPU
set to single processor unit CPU7 to avoid process contention
and interrupts. All system functions were locked to other
CPU instances and not allowed to execute on CPU7.

Execution times were measured with rusage() calls before
and after calls to each method in Octave. The elapsed time
has microsecond resolution from the rusage() function. In
addition, the interrupt balance kernel function was dis-
abled. The status of the CPU cores and interrupts may be
observed in /proc/interrupts. The CPU clock frequency
was locked to a fixed value of 800 Mhz for the x86_64 system.
Virtual memory was dropped prior to execution to ensure
maximum physical memory availability.

In addition to the 64-bit platform, an embedded 32-bit
ARM architecture was also configured for computational
reference. Due to time constraints, no real-time kernel was
implemented for the ARM. The CPU clock frequency was
locked to a fixed value of 840 Mhz for the embedded ARM
system.

E “XqM -x

(60)

*
X — X

In both of the above benchmark cases, all noncritical
network and file system processes and daemons were stopped
prior to code execution. In both cases, program execution
was monitored and noted to reside in virtual (nonswaped)
memory mapped to physical memory.

2.11.1. Methods. The kaczmarz(), randkaczmarz(), and cim-
mino() methods were called directly from the AIR toolkit
[22]. The functions for the block method chenko() were
implemented from Vasilchenko and Svetlakov [23] of the
form

Xjo =%+ A7 (4,47) " (b- Ax;) i = j(modk) + 1
(61)

for A; = E] A.

The rkos() was implemented from [16] algorithm. The
function for least squares Is() was computed from the equa-
tion

x" = (ATA) " ATb. (62)

The function for singular value decomposition svd() used the

decomposition of the sampling matrix A = UZV7, and the
solution was computed as follows:

x" = vz uTax® = vz 'uTh. (63)

The resulting plots are intended to illustrate how the methods
scale with increasing measurement matrix size and not
directly used in absolute terms, since each method has
various dependencies in hardware and software.

A simple baseline Kaczmarz code was written to ensure a
baseline reference was available. The Octave source code for
a typical method is included in the inset Listing 1.

2.11.2. Notes Regarding Simulations. The sizes of the matrix
blocks equal matrix dimensions until constant block size of
sixteen rows. The legend key is as follows:

(1) least squares: LS(),

(2) singular value decomposition: SVD(),
(3) Kaczmarz(),

(4) randomized Kaczmarz: RK(),

(5) block method randomized Kaczmarz orthogonal sub-
spaces: RKOS(),

(6) Cimmino(),
(7) block method Vasilchencko(),

(8) reference P1: simple matrix multiply with known
O(N?) complexity,

(9) reference P2: N times P1 for known O(N?) complex-
ity,

(10) reference Kaczmarz as shown in Listing 1.
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M

(6)

function [X info] = kazbase (A, b)

% note that matrix A is assumed to have normalized rows in below.
load x_solution.data x_sol

x_exact = x_sol

load convergence limit.data

convergence_limit

myKmax = ceil(—log(convergence_limit))

ntimes = myKmax

[M, N] = size (A)

=0
(11) xkO = zeros (M, 1);
x0 = xkO;
for n = 1: ntimes
forkn=1. M
=i+t
16)  %%%% % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
delta_xk_plus_10 = (eye (N) — A(kn, :)’ = A(kn, :)) * (x_exact — xkO);
xkO = x_exact — delta_xk_plus_10;
%error0 (jj) = norm(delta_xk_plus_10, 2)/norm(x_exact — x0, 2);
9% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
(21) end
end
X = xkO0

L1sTING 1: Reference Kaczmarz Baseline.

3. Results and Discussion

Here, we compare our angle-based randomization with
norm-based randomization of Strohmer and Vershynin [4]
in the context of uniform and nonuniform measurement
methods. In particular, Shepp-Logan and sinc2d() phantom
images were used as the solutions in four different simulation
experiments [3]. Figure 3(d) shows that our approach (angle-
based randomization) provides a better convergence rate
over the randomized Kaczmarz (norm-based randomization)
in the case of fan-beam sampling of the sinc2d() phantom.
However, our method is computationally more complex, and
therefore we devised the P-subspace algorithm (presented in
the previous section).

In the experiments which follow, three factors of interest
are the sampling angular distribution of the measurements
(affects coherence), the algorithms’ method of iteration
through the sampling hyperplanes, and the rate of conver-
gence of the solution. The simulations were computed in
parallel for each of the methods: Kaczmarz (K), random-
ized Kaczmarz hyperplane angles (RKHA), and randomized
Kaczmarz (RK). Iteration is terminated at stopping point
defined as the condition when at least one of the three
methods attains a normalized error of 10% or less. Estimates
for the signal to noise ratio are computed at same common
stopping point.

3.1. Sampling Distributions. The following experiments
compare Kaczmarz (K), randomized Kaczmarz (RK), and
randomized Kaczmarz hyperplane angles (RKHA) via
simulations. The objectives are to illustrate the effect of

row randomization upon the convergence and observe the
dependency upon the sampling methods.

3.1.1. Angular Distribution of Sampling Hyperplanes. A com-
parison of the distribution of hyperplane sampling angles in
computed tomography (CT) was performed to investigate
the convergence rate versus measurement strategy. Example
results are presented for iterative convergence of methods K,
RK, and RKHA under conditions of random, fan, and parallel
beam sampling strategies using the Shepp-Logan phantom
(see Figure 1(b)) [22], paralleltomo.m and fanbeamtomo.m
from the AIRtools distribution [22] and randn() from the
built-in function method [24]. The typical results for the
angular distributions are provided in Figures 2(a) and 2(b)
and discussed in more detail below.

3.1.2. Sampling Coherence. In linear algebra, the coherence
or mutual coherence [25] of a row measurement matrix
A is defined as the maximum absolute value of the cross-
correlations between the normalized rows of A.

Formally, let {a,,...,a,} € R be the set of row vectors
of the matrix A € R normalized such that (a;a;) =
afa; = 1 where ()" is the Hermitian conjugate and where
M > N. Let the mutual coherence of A be defined as

H
$ij = max [aaj]. (64)
A lower bound was derived as ¢ > (M — N)/N(M - 1) in
Welch [26].

In the distributions of Figures 2(a) and 2(b), it should

be noted that the random sampling is concentrated near
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(a) random and (b) fan-beam data acquisition strategy where the unit norm vectors a,, a, are selected rows of matrix A.

90 degrees probability but fan sampling is less concentrated
across the interval [0, 90] degrees.

3.1.3. Observations on Effects of Sampling Distribution, Algo-
rithm, and Convergence. Firstly, the convergence rates of K,
RK, and RKHA are noted to be closely correlated for the case
of random data sampling of the phantom in Figures 3(a) and
3(b). This is consistent with the mean values of coherence
near zero for random sampling.

The cases for fan and parallel sampling have increas-
ingly higher coherence and increasing numbers of iterations
required to meet the 10% error stopping condition. Both test
images for fan-beam sampling converge in example Figures
3(c) and 3(d) and show slight benefit from the methods which
minimize the coherence, such as RK, RKHA, and RKOS.
Example quantitative results for the two cases of fan sampling
are shown in (a) Shepp-Logan Table 3 and Figure 4 and (b)
sinc2d() Table 4 and Figure 5.

Comparison of convergence results to the estimated
coherence for the three cases given in Table 5 suggest
consistent interpretation. Comparison of percent error and
SNR of Tables 1, 2, 3, and 4 indicate the randomization
methods have slight advantage under coherent fan sampling,
providing increased SNR and lower percent error.

3.1.4. Potential Applications. Since the iterative methods uti-
lize projections, the angles between the optical lines-of-sight
(LOS) forming the measurement hyperplanes are of consider-
able interest in terms of data acquisition and system design.
Most methods of computed tomography do not reasonably
allow random or orthogonal data sampling of the object of
interest.

Therefore, these systems which acquire coherent data
may benefit from use of the randomized methods RK,
RKHA, or RKOS in data inversions. Typical examples of such
systems may include computed tomography in medical and

J

TaBLE 1: Random sampling of Shepp-Logan SNR and percent error
at stopping.

Performance estimates Kaczmarz RKHA RK
SNR 10.1 5.60 4.5
% error 9.9 19.9 221

TaBLE 2: Random sampling of sinc2d() SNR and percent error at
stopping.

Performance estimates Kaczmarz RKHA RK
SNR 10.0 5.6 52
% error 9.9 17.6 19.1

TABLE 3: Fan beam sampling of Shepp Logan, SNR, and percent
error at stopping.

Performance estimates Kaczmarz RKHA RK
SNR 10.0 9.95 9.5
% error 9.9 10.0 10.5

TABLE 4: Fan beam sampling of sinc2d() SNR and percent error at
stopping.

Performance estimates Kaczmarz RKHA RK
SNR 71 10.0 9.2
% error 14.0 9.9 10.7

nonmedical X-ray, transmission ultrasound [27, 28], and
resonance optical absorption and molecular florescence in-
vivo imaging [29]. Each of the aforementioned systems are
potentially feasible applications of RKHA or RKOS, since
in each case, the measurements are path integrated along
a mostly nonorthogonal set of electromagnetic LOS’s and
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FIGURE 3: Semilog (y-axis) plot example of normalized convergence error results for K, RK, and RKHA on Shepp-Logan phantom using
random and fan tomographic data acquisition sampling and stopping at 10 percent error.

FIGURE 4: Reconstructed test images for Shepp-Logan with fan sampling with error from left to right: exact, K (9.9% error), RKHA, and RK
Shepp Logan.

generally require inversion to obtain the parameters of
interest, such mole-fraction or species density.

3.2. Experimental Results for Convergence of K, RK, and
RKHA. Tterative simulations were performed to estimate the

relative convergence rates of methods K, RK, RKHA for the
data examples above: random and fan beam sampling. Rep-
resentative results are shown in Figures 3(a), 3(b), 3(c), and
3(d) for noiseless data measurement scenarios of the standard
Shepp-Logan phantom and sinc2d() solutions under random
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FIGURE 5: Reconstructed test images for sinc2d() with fan sampling with error from left to right: exact, K, RKHA (9.9%), and RK.

TaBLE 5: Typical coherence estimates for N = 100, M = 200 for
random randn() and N = 100, M = 222 for fan fanbeamtomo()
and parallel paralleltomo().

Coherence versus measurement

Random Fan Parallel
method
Coherence (64) 4 1.0 1.0
Average value of
-.0013 .06 18
G;= (5,,5j> (I<i#j<M)
Median value of -0.0009 0 0

G, =(@,3) (1<i#j<M)

and fan-beam sampling simulations. Parallel beam sampling
and rect_sinc2d() solution vectors were also simulated. The
results were consistent with observations reported herein but
not included in this report.

3.2.1. Test Images for Algorithms. The Shepp Logan image was
generated from the phantom code in reference [22], which
is also the source for the fan-beam sampling algorithm. The
sinc2d() function is defined as

sin (7x) sin (7y)

sinc2d (x, y) =
X Ty

(65)

and was computed as the outer-product of two independent
vectors constructed from the included code sinc.m in the
signal processing package of Octave [21]. The rectangular
rect_sinc2d.m function was used from source (https://
engineering.purdue.edu/VISE/ee438/demos/2D_signals_sys-
tems/rect_sinc2d.m) which computes the two-dimensional
sinc() function from the Fourier transform of the two-
dimensional rectangle function.

3.2.2. Image Reconstruction Error. A comparison of the toy
phantoms was performed based upon the estimated signal to
noise ratio and total percent error versus iteration. Percent
error and SNR were estimated for the Shepp-Logan phantom
and the artifact based upon first method to obtain stopping
error at 10% percent normalized error.

The normalized error is defined as

_ Ix=xds

= , (66)
I = xal,

€k

and estimate the signal to noise ratio (SNR) is estimated as
1/€; with the x,, vector set to the the zero vector.

TABLE 6: Numerical estimates for computational complexity using
naive codes.

Computational LS

i SVD  Kaczmarz RK RKOS
complexity
Theoretical O(N*) O(N?) O(N?*)  O(N?*) O(N?)
Numerical 27 3.1 11 11 11
estimates
1025 R R RN B R AR R B FAE R AR I IR ER R AR R
10t L
2 10°F HETEI 4
e HEPNT ]
E Ry,
= 1 : H /yi
10 ¢ RN
107 BiEe
1073 " —
10° 10° 10
Matrix dimensions
- LS RKOS
- O- SVD Cimmino
—+- Kaczmarz <7- Vasilchenko
£1- RK

FIGURE 6: Relative computational time using dedicated custom real-
time Linux kernel 3.12.5 patched versus square matrix dimensions
N =29Vq € [4,...,10]; CPU is shielded and frequency locked for
single process and single core (one of eight) 800 MHz Intel 64-bit i7.

3.3. Experimental Results for Complexity Estimates. Timings
and plots of the methods were computed for a range of
matrix sizes and plotted on log-log plots as shown in Figures
6 and 7, with measured run-times for 64-bit and 32-bit,
respectively. For each method, the size of A matrix was
modified and average time to complete was measured. The
data matrix was chosen to the be hadamard() function for
ease of implementation and reference. The solution vector
was chosen as a random point in the binomial distribution
with p = 0.5 using the binornd() function.

It is notable that the theoretical complexity of noise lim-
ited Kaczmarz is O(N?) but the slope of the timings is closer
to 1.1 than 2.0. This is attributed to relatively small matrix
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TABLE 7: Numerical estimates for computational complexity using naive codes.

Computational complexity Cimmino Vasilchenko Ref. P1 Ref. P2 Ref. Kaczmarz
Theoretical O(N?) O(N?) O(N?) O(N?) O(N?)
Numerical estimates 1.6 2.1 2 3.2 11
10° - fan and parallel X-ray beams, as well as random uniform
3 ] sampling.
02l ] Relative performance benchmarks for complexity were
obtained for typical hardware and software for various
. 1 methods of well-known Kaczmarz algorithms. As expected,
10' 3 3 the Kaczmarz methods out-perform other methods, such
= i as least-squares and singular value decomposition. The
g 10% E performance of embedded 32-bit ARM CPU architecture
= : ] was sufficient to demonstrate functional capability over a
101 L ] range of low-power application environments such as mobile
] medicine platforms.
St The new angle-based method (RKHA) and orthogo-
10 3 3 nal block (RKOS) inversion method demonstrated herein
ool BRI showed quantitative convergence improvement consistent
107 with increasing orthogonality and decreasing coherency
10° 10! 10° 10° 10* of measurements. Future designs for tomography should
Matrix dimensions consider optimization of angular sampling distributions in
x- LS 4~ RKOS addition to other factors, such signal to noise ratio, as
- SVD Cimmino important system parameters, since these criteria ultimately
—+- E;szarz v~ Vasilchenko affect the spatial-temporal resolution and uncertainty for a
{],

FIGURE 7: Relative computational time for embedded micropro-
cessor dedicated task custom Linux kernel 3.12.7 ARMv7 relative
computational time versus matrix dimensions N = 27Vq ¢
[4,...,10]; CPU ARM frequency locked kernel only process stack
840 MHz 32-bit.

sizes, and it is expected that the complexity asymptotically
approaches ~2.0 for large N.

The theoretical and numerical estimates for complexity
are shown in Tables 6 and 7.

4. Conclusions

A new iterative selection rule based upon the relative cen-
tral angle (RKHA) shows enhanced convergence in mea-
surements which contain coherence. However, the method
requires a computational penalty related to the dot-products
of all to all rows, which may be overcome by a priori determi-
nation. A new block method using constructed orthogonal
subspace projections provides enhanced tolerance to mea-
surement coherence, but may be affected by noise at least as
much as simple Kaczmarz. The exponential convergence is
accelerated by the P/N term and is computationally feasible
for small P relative to N.

The theoretical convergence rates of above subspace
methods were demonstrated using statistical IID assump-
tions or cyclical projections using the formalism of Galan-
tai. Numerical results were presented from simulations of
algorithm convergence under measurement distributions for

given number of samples per unit volume.
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