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This paper presents a framework for finding similarity matrices for the segmentation 
of data W = [w1 · · ·wN ] ⊂ RD drawn from a union U =

⋃M
i=1 Si of independent 

subspaces {Si}Mi=1 of dimensions {di}Mi=1. It is shown that any factorization of W =
BP , where columns of B form a basis for data W and they also come from U , can 
be used to produce a similarity matrix ΞW. In other words, ΞW(i, j) ̸= 0, when the 
columns wi and wj of W come from the same subspace, and ΞW(i, j) = 0, when the 
columns wi and wj of W come from different subspaces. Furthermore, ΞW = Qdmax , 
where dmax = max {di}Mi=1 and Q ∈ RN×N with Q(i, j) =

∣∣PTP (i, j)
∣∣. It is shown 

that a similarity matrix obtained from the reduced row echelon form of W is a 
special case of the theory. It is also proven that the Shape Interaction Matrix 
defined as V V T , where W = UΣV T is the skinny singular value decomposition 
of W, is not necessarily a similarity matrix. But, taking powers of its absolute 
value always generates a similarity matrix. An interesting finding of this research 
is that a similarity matrix can be obtained using a skeleton decomposition of W. 
First, a square sub-matrix A ∈ Rr×r of W with the same rank r as W is found. 
Then, the matrix R corresponding to the rows of W that contain A is constructed. 
Finally, a power of the matrix PTP where P = A−1R provides a similarity matrix 
ΞW. Since most of the data matrices are low-rank in many subspace segmentation 
problems, this is computationally efficient compared to other constructions of 
similarity matrices.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this research, the focus is on the generation of similarity matrices for clustering a set of data points 
that are drawn from a union of subspaces. Specifically, given a set of data W = {w1, ..., wN} ⊂ RD drawn 
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from a union of subspaces of the form U =
⋃

i∈I Si, where 
{
Si ⊂ RD

}
i∈I

is a set of subspaces, we wish to 
define a similarity matrix that allows us to

1) determine the number of subspaces M = |I|,
2) determine the set of dimension di for each subspace Si,
3) find an orthonormal basis for each subspace Si,
4) collect the data points belonging to the same subspace into the same cluster.

Union of subspace models have become common in several areas of mathematics and its applications, such as 
sampling, compressed sensing, and frame theory [1–4]. For example, all images of a given face i with same fa-
cial expression, obtained under different illuminations and facial positions, can be modeled as a set of vectors 
belonging to a low dimensional subspace Si living in a higher dimensional space RD [5,6]. Another example is 
segmentation of moving rigid objects in videos. Consider a video with F frames of a scene that contains multi-
ple moving rigid objects. Let p be a point on one of these objects and let xi(p), yi(p) be the coordinates of p in 
frame i. Define the trajectory vector of p as the vector w(p) = (x1(p), y1(p), x2(p), y2(p), . . . , xF (p), yF (p))T
in R2F . In this case, the trajectory vectors of multiple independent motions lie in 4-dimensional independent 
subspaces in R2F [7,8]. However, it should be noted that independence is a strong assumption for real-world 
problems (e.g. motion of non-rigid objects or motion of rigid objects on the same planar surface).

In this research, we focus on a way of finding similarity matrices that can be used in clustering algorithms. 
As such, our aim is to concentrate and understand the first step used in many subspace clustering algorithms. 
Typically, a method for finding a similarity matrix is used, followed by spectral clustering (a common practice 
in computer vision and machine learning is to use the absolute value of a similarity matrix as an affinity 
before spectral clustering). For example, a method related to compressed sensing by Liu et al. [9,10] finds 
the lowest rank representation of the data matrix. The lowest rank representation is then used to define the 
similarity of an undirected graph, which is then followed by spectral clustering. It is shown in [11] that the 
low-rank minimization problem of [9] results in the shape interaction matrix V V T and the problem is related 
to factorization rather than sparsity. There are many other methods that produce a similarity matrix as 
a stage for further processing, such as sparsity methods [12–14,9], algebraic methods [15–17], iterative and 
statistical methods [18,8,19–22], and spectral clustering methods [13,14,23–29]. Some important methods on 
subspace clustering are reviewed and their advantages and disadvantages discussed in [28]. Spectral graph 
partitioning and harmonic analysis on graphs and networks data are explained in [30].

In this research, graph connectivity of data nodes is analyzed to develop theory for a general framework 
of similarity matrices. Some of the existing techniques generates affinity matrices that has some graph 
connectivity issues. A discussion on this is given [31]. For example, the well-celebrated Sparse Subspace 
Clustering (SSC) algorithm produces a sparse affinity matrix whose (i, j)th entry is non-zero only if the 
data points xi and xj are from the same subspaces. However, it is not guaranteed that the data points form 
the same subspace generates a connected graph. Low-Rank Representation (LRR) method results in an 
affinity matrix, which is equivalent to Shape Interaction Matrix V V T [9]. However, in this paper, we show 
that Shape Interaction Matrix may not always be a similarity matrix and it may lead over-segmentation 
problem for a set with measure zero.

1.1. Paper contributions

• This paper presents a mathematical framework for finding similarity matrices for segmentating data 
W = [w1 · · ·wN ] ⊂ RD drawn from a union U =

⋃M
i=1 Si of independent subspaces {Si}Mi=1 of dimensions 

{di}Mi=1. It is shown that any factorization W = BP , where the columns of B come from U and form 
a basis the column space of W, can be used to produce a similarity matrix ΞW, i.e., if ΞW(i, j) ̸= 0, 
the columns wi and wj of W come from the same subspace, similarly, and if ΞW(i, j) = 0, the columns 
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wi and wj of W come from different subspaces. In particular, ΞW = Qdmax , where dmax = max {di}Mi=1
and Q ∈ RN×N is given by Q(i, j) =

∣∣PTP (i, j)
∣∣.

• It is proven that the Shape Interaction Matrix defined as V V T , where W = UΣV T is the skinny 
singular value decomposition of W, does not always produce a similarity matrix even though V V T

has been widely used as a similarity matrix in subspace segmentation research [32]. However, we show 
that V V T can always be used to obtain a similarity matrix as follows: (1) Define Q ∈ RN×N with 
Q(i, j) =

∣∣V V T (i, j)
∣∣, and (2) ΞW = Qdmax , where dmax is the dimension of the highest dimensional 

subspace. For example, dmax = 4 for segmentation of independent rigid body motion.
• It is shown that a similarity matrix can be obtained from the reduced row echelon form of W as in [33].
• An interesting finding of this research is that a similarity matrix can be obtained using a skeleton 

decomposition of W. Let A ∈ Rr×r be any square sub-matrix of W with the same rank r as W, and let R
be the rows of W containing A. Then a similarity matrix can be constructed using the matrix PTP where 
P = A−1R. Since most of the data matrices are low-rank in many subspace segmentation problems, 
this is a computationally efficient method compared to other constructions of similarity matrices.

2. Preliminaries

In this paper, we assume that the subspaces are independent and data is generic (as defined below). We 
have the following definitions and some basic theory on subspaces.

Definition 1 (Independent subspaces). Subspaces {Si ⊂ RD}Mi=1 are called independent if their dimensions 
satisfy the following relationship:

dim(S1 + · · · + SM ) = dim(S1) + · · · + dim(SM ) ≤ D.

The definition above is equivalent to the property that any set of non-zero vectors {w1, w2, . . . , wM} such 
that wi ∈ Si, i = 1, . . . , M are linearly independent.

Definition 2 (Generic data). Let S be a linear subspace of RD with dimension d. A set of data W drawn 
from S is said to be generic if (i) |W| > d, and (ii) every d vectors from W form a basis for S.

Definition 3 (Similarity matrix). W = [w1 · · ·wN ] ⊂ RD drawn from a union U =
⋃M

i=1 Si of independent 
subspaces {Si}Mi=1. We say ΞW is a similarity matrix for W if and only if (i) ΞW is symmetric, and 
(ii) ΞW(i, j) ̸= 0 implies that wi and wj come from the same subspace, and ΞW(i, j) = 0 implies that wi

and wj come from different subspaces.

Definition 4 (Pre-similarity matrix). Let W = [w1 · · ·wN ] ⊂ RD drawn from a union U =
⋃M

i=1 Si of 
independent subspaces {Si}Mi=1. We say ΠW is a pre-similarity matrix for W if and only if there exists an 
integer n ≥ 1 such that (Π)n is a similarity matrix. The order of a pre-similarity matrix is the smallest r
such that (Π)r is a similarity matrix.

Note that a pre-similarity matrix is a similarity matrix if and only if its order is 1. Also note that, for a 
pre-similarity matrix Π of order r, (Π)n is a similarity matrix for n ≥ r.

Definition 5 (Absolute value of a matrix). Let A ∈ Rm×n. We denote by abs(A) ∈ Rm×n the absolute value 
version of A defined by abs(A)(i, j) = |A(i, j)|.

Definition 6 (Binary version of a matrix). Let A ∈ Rm×n. We denote by bin(A) ∈ Rm×n the binary version 
of A defined by bin(A)(i, j) = 1 for A(i, j) ̸= 0 and bin(A)(i, j) = 0 otherwise.
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We state a well-known definition and theorem from graph theory (please refer to any graph theory 
textbook such as [34]).

Definition 7 (Walk on a graph). Let G = (V, E) be a graph that includes self-loops. A walk on G is an al-
ternating sequence (v1, e12, v2, e23, v3, ..., vm) of vertices {v1, v2, v3, ..., vm} and edges {e12, e23, ...} beginning 
and ending with vertices, such that each edge’s endpoints are the vertices preceding and following it.

Theorem 1 (nth power of adjacency matrix). Let G be a undirected graph with vertices {v1, ..., vm} and 
assume its adjacency matrix is A. Then, An(i, j) is the number of walks of length n from vi to vj.

Definition 8 (Positively weighted adjacency matrix). Let G = (V, E) be a graph that includes self-loops. 
A Positively Weighted Adjacency Matrix A for G is such that A(i, j) > 0 if and only if there is an edge 
between vi and vj .

Definition 9 (Diameter of a graph). Let G = (V, E) be a graph with vertices {v1, ..., vm}. The distance 
between vi and vj is the number of edges in the shortest path between vi and vj . The diameter d of G
is defined as d(G) = max

vi,vj∈V
dis(vi, vj). In other words, the diameter is the largest distance between two 

vertices in the graph.

Corollary 1 (dth power of positively weighted adjacency matrix). Let G be an undirected connected graph 
with vertices {v1, ..., vm} and assume its positively weighted adjacency matrix is A, i.e., A(i, j) ≥ 0. Then, 
Ad(i, j) > 0 for all i, j, where d is the diameter of G.

Proof. We first show by induction that there is a walk from vi to vj of length n, if and only if An(i, j) > 0. 
By construction, A(i, j) > 0 if and only if there is a walk of length one between vi and vj . Now assume 
that for any vi, vj ∈ V there is a walk of length n between vi and vj if and only if An(i, j) > 0. And 
assume that there is a walk of length n + 1 between vm, vl ∈ V . Then, there is a k0 such that there is a 
walk of length one between vk0 and vl, and a walk of length n between vm and vk0 . Thus A(k0, l) > 0 by 
construction and An(m, k0) > 0 by the induction hypothesis. Since An+1 = AnA, we have that An+1(m, l) =∑

k A
n(m, k)A(k, l) ≥ An(m, k0)A(k0, l) > 0.

For the converse. If An+1(m, l) =
∑

k A
n(m, k)A(k, l), then there exists a k such that An(m, k) > 0 and 

A(k, l) > 0. Hence there is a walk of length n between vm and vk and a walk of length one between vk
and vl. Finally, since the diameter of G is d, then there is a walk of length at most d between any two 
vertices. ✷

3. Main results

Theorem 2 below provides the relationship between a factorization of W and an associated similarity 
matrix ΞW. We also show that the reduced row echelon of W, singular value decomposition of W, and 
skeleton decomposition of W can be used to generate similarity matrices for W.

Assumptions 1 (Assumptions on data). In the remaining of this manuscript, we will assume that U =⋃M
i=1 Si is a nonlinear set consisting of the union of non-trivial, independent subspaces {Si}Mi=1 of RD, with 

corresponding dimensions {di}Mi=1. We will assume that the data matrix W = [w1 · · ·wN ] ∈ RD×N has 
column vectors that are drawn from U , and that the data is drawn from each subspace Si and that it is 
generic for it.
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Theorem 2. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are drawn from U be factorized as 
W = BP where B is a basis for the column space of W and that the columns of B lie in U . If Q = abs(PTP )
and dmax = max {di}Mi=1, then, ΞW = Qdmax is a similarity matrix for W.

The proof of Theorem 2 is based on the following three Lemmas.

Lemma 1. Assume W ∈ RD×N is a matrix of generic data drawn from a single subspace S of dimension 
r < N . Consider the factorization W = BP , where the columns of B ∈ RD×r form a basis for the range of 
W. Let P = [p1 · · · pN ] ∈ Rr×N , where pi’s are columns of P . Then, the columns of P are generic for Rr, 
i.e., any r number of columns of P is a basis for Rr.

Proof. Pick any r columns {pi1 , . . . , pir} of P and assume that c1pi1 + c2pi2 + . . .+ crpir = 0, for constants 
{c1. · · · , cr}. Then, B(c1pi1 + c2pi2 + . . . + crpir) = 0. Hence c1wi1 + c2wi2 + . . . + crwir = 0. Since W is 
generic, we get that ci = 0 for all i ∈ {1, . . . , r}. Therefore, {pi1 , . . . , pir} is linearly independent. ✷

Lemma 2. Let {p1, . . . , pr+1} be a set of generic vectors that represent data from a subspace S of dimension 
r ≥ 1, and let G be the graph whose nodes are indexed by pi and whose edges are those pipj such that 
Q(i, j) > 0, where Q is defined as in Theorem 2. Then G is a connected graph.

Proof of lemma. Let C be the vertices of a non-empty connected component of G. We will show that Cc

is empty. Assume that |Cc| = k > 0. Then, since C is non-empty, we have |Cc| ≤ r. Hence Cc is a linearly 
independent set due to data being generic. Similarly, since k > 0, |C| ≤ r, and therefore C is also linearly 
independent set. But by construction of G, ⟨p, q⟩ = 0 for any p ∈ Cc and q ∈ C. Therefore, Cc ⊥ C. Thus, 
the set {p1, . . . , pr+1} is linearly independent contradicting the assumption that dim(S) = r. Hence |Cc| = 0
and G is connected. ✷

Lemma 3. Let V = {p1, . . . , pN} be a set of generic vectors that represent data from a subspace S of 
dimension r and N > r ≥ 1. Let G be the graph whose nodes are indexed by pi and whose edges are those 
pipj such that Q(i, j) > 0. Then G is connected. Moreover the diameter of G is at most r.

Proof of lemma. Let p, q ∈ V and assume that p ̸= q. Since N > r, and V is generic, there exist r−1 distinct 
vectors of E ⊂ V such that {p, q} ∪E form distinct r+ 1 vectors that are generic. Thus, by Lemma 2, their 
graph is connected. Hence there is a path between p and q of length at most r. Since p, q are arbitrary, the 
proof is complete. ✷

Proof of Theorem 2. We simply note that if p and q are representations of data from subspaces Si and Sj

with i ̸= j, ⟨p, q⟩ = 0. Hence there is no edge between p and any q. Therefore, by the previous Lemmas, the 
graph G consists of exactly M disconnected components such that each connected component j corresponds 
to the vectors that belong the same subspace Sj .

To prove the theorem, we simply note that the diameter of each component is at most dmax and 
Qdmax(i, j) > 0 by Corollary 1. ✷

Now, we will discuss a special case in which the binary version of PTP is a pre-similarity matrix. 
Corollary 2 has the same conditions as Theorem 2 with the exception that Q is not the absolute value 
version of PTP , but it is the binary version of PTP .

Remark 1. As a direct consequence of Lemma 3, if V = {p1, . . . , pN} is a set of generic vectors that represent 
data from S of dimension r and N > r ≥ 1 and G is the graph whose nodes are indexed by pi and whose 
edges are those pipj such that Q(i, j) = 1 when PTP (i, j) ̸= 0 and Q(i, j) = 0 otherwise, then G is 
connected.
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As a consequence of Theorem 2 and Remark 1, we get the following corollary.

Corollary 2. Assume the same conditions as those of Theorem 2. Let Q = bin(PTP ) and dmax =
max {di}Mi=1. Then, ΞW = Qdmax is a similarity matrix for W.

3.1. Shape Interaction Matrix – revisited

We begin this section by a definition of the skinny SVD.

Definition 10 (Skinny SVD). Let W be an D × N matrix with rank(W) = r, and let the SVD of W be 
UΣV T . The skinny SVD of W is the decomposition W = UrΣrV T

r , where Ur is the first r columns of U , 
V T
r is the first r rows of V T , while Σr is the upper left r × r sub-matrix of Σ.

In [32], it is stated that a similarity matrix (called Shape Interaction Matrix – SIM) can be constructed 
using the singular value decomposition (SVD). Let the skinny SVD of W be UΣV T . Then SIM(W) is 
defined by

SIM(W) = V V T . (3.1)

It is also stated that SIM(W) is block diagonal for sorted W. A proper proof is not provided in [32]. 
However, we can show, that although SIM(W) is a similarity matrix most of the time, there are some cases 
in which it is not. In fact, V V T is not even a pre-similarity matrix in such cases.

Consider the skinny SVD W = UΣV T of a data matrix W. It is not even clear that abs(V V t) is a 
pre-similarity matrix, since the basis UΣ for W, does not necessarily come from the union of subspaces 
U = {Si}Mi=1, and Theorem 2 does not apply directly. However, we can still show that abs(V V T ) is in fact 
a pre-similarity matrix.

Theorem 3. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are drawn from a union of subspaces 
U as in Assumptions 1. Let the skinny SVD of W be given by W = UΣV T , and define Q = abs(V V T ). 
Then, ΞW = Qdmax is a similarity matrix for W, where dmax = max {di}Mi=1.

Proof. Let U = {Si}Mi=1, and ni be the number of data points that come from subspaces Si with dimensions 

di (
M∑
i=1

ni = N). Assume rank(W ) = r (i.e., 
M∑
i=1

di = r). Without loss of generality, assume that the data is 
sorted, that is

W = [W1 W2 . . .WM ]

where Wi’s have columns drawn from Si’s. Consider the following skinny SVDs:

W = UΣV T (3.2)

Wi = UiΣiV
T
i

where W ∈ RD×N , U ∈ RD×r, Σ ∈ Rr×r, V T ∈ Rr×N , Wi ∈ RD×ni , Ui ∈ RD×di , Σi ∈ Rdi×di , 
V T
i ∈ Rdi×ni . Then,

W = [W1 W2 . . .WM ] =
[
U1Σ1V T

1 U2Σ2V T
2 . . . UMΣMV T

M

]

This is equivalent to the following factorization:
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W = [U1Σ1 U2Σ2 . . . UMΣM ]
[
diag(V T

1 , V T
2 , . . . , V T

M )
]
, (3.3)

where 
[
diag(V T

1 , V T
2 , . . . , V T

M )
]

is the block diagonal matrix whose blocks are V T
i , i = 1, . . . , M . Since 

the columns of UiΣi’s are bases for Si’s, and since UiΣi’s are obtained from the skinny SVDs of Wi’s, 
it follows that the columns of [U1Σ1 . . . UMΣM ] live in U =

⋃M
i=1 Si and they form a basis for the 

column space of W (by the independence assumption of the subspace Sis). Thus, by Theorem 2, we get 
B = [U1Σ1 U2Σ2 . . . UMΣM ], P =

[
diag(V T

1 , V T
2 , . . . , V T

M )
]
, and a block diagonal matrix PTP =[

diag(V1V T
1 , V2V T

2 , . . . , VMV T
M )

]
whose absolute ΠW = abs(PTP ) value is a pre-similarity matrix. Although 

ΠW = abs(PTP ) is a pre-similarity matrix, it cannot be computed from W since we do not know ni a priori, 
even if W = [W1 W2 . . .WM ] is sorted. The dimensions of V T

i is di×ni. Thus, the block diagonal matrix 
P has dimensions r ×N . Moreover, the matrix V in the skinny SVD of W has dimensions N × r. What is 
remarkable is that V V T = PTP and therefore V V T is block diagonal and that abs(V V T ) is a pre-similarity. 
Moreover, V V T can be computed from W directly since all we need is to computed the skinny SVD of W
to get V . Thus, to finish the proof of the theorem, we only need to prove the following claim.

Claim 1. V V T = PTP .

Proof of claim. Since UΣ is a basis for W and the columns of UiΣi lie in Si, we can find an Ai ∈ Rr×di

such that UiΣi = UΣAi. Therefore, using Equation (3.3), we get

W = UΣ [A1 A2 . . . AM ]P = UΣAP (3.4)

where P =
[
diag(V T

1 , V T
2 , . . . , V T

M )
]

and A = [A1 A2 . . . AM ]. Since UΣ is full-rank, using Equa-
tion (3.2), we have

V T = AP and V = PTAT . (3.5)

Since V is computed from the skinny SVD of W, it follows that V TV = Ir where Ir is the r × r identity 
matrix. Moreover, since the matrices Vis in the blocks of P are computed from the skinny SVD of Wis it 
follows that PPT = Ir where Ir is the r × r identity matrix. Therefore, Ir = V TV = APPTAT = AAT . 
This implies that

AAT = Ir

and therefore AT = A−1, hence AAT = ATA = Ir. As a result, we have

V V T = PTATAP = PTP, (3.6)

which finished the proof of the claim. ✷

Thus the proof of the theorem is complete. ✷

Although V V T is often used as a similarity matrix in applications, the following example shows that 
V V T does not have to be a similarity or even a pre-similarity matrix, in general.

Example 1. Let the data come from union of two subspaces S1 (with canonical basis {e1, e2}) and S2 (with 
canonical basis {e3}). The first 4 columns are from S1 and the last 2 columns are from S2.

W =
[1 0 1 1 0 0

0 1 1 2 0 0
0 0 0 0 1 2

]
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A simple calculation shows that the Shape Interaction Matrix SIM(W) for W has two blocks and one 
of the blocks contains zero elements. Since V TV is the identity matrix, (V V T )n = V V T for any n > 0. 
Hence, SIM(W) is neither a similarity nor a pre similarity matrix. However, abs(V V T ) is a pre-similarity 
matrix and (abs(V V T ))2 is a similarity matrix in this particular case where dmax = 2.

However, similarly to the well-known fact that data that is drawn uniformly at random from a subspace 
is always generic except for a set measure of zero. It can also be shown that if data is randomly drawn from 
a union of subspaces W, then V V T will be a similarity matrix except for a set of measure of zero, of which 
the matrix above is an example.

Lemma 4. Let Sl be a dl dimensional subspace of RD. Then, any n ≤ dl number of data points picked 
uniformly at random from Sl are linearly independent with probability 1.

Proof. We will use induction over n. Assume the statement is true for {w1, w2, . . . , wn} and consider 
{w1, w2, . . . , wn, wn+1}. Since {w1, w2, . . . , wn} are linearly independent with probability 1 by assump-
tion, normalized {w̃1, w̃2, . . . , w̃n} lies on a n-dimensional ball in Rn with probability 1. Now, assume 
{w1, w2, . . . , wn, wn+1} are not linearly independent. Then, {w̃1, w̃2, . . . , w̃n, w̃n+1} still lies on the same 
n-dimensional ball but this time in Rn+1. Such a probability is clearly 0. Finally, the statement of lemma 
is obviously true for n = 1. ✷

Theorem 4. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are drawn from a union of subspaces 
U as in Assumptions 1. Assume the normalized data uniformly distributed from each subspace and that it is 
generic. Let the skinny SVD of W be given as W = UsΣsV T

s . Then, Q = VsV T
s is a similarity matrix for 

W except for a set of measure of zero.

Proof. Let d =
∑

i di be the rank of W, and UsΣsV T
s the skinny SVD’s of the data matrix W. Then the 

set VsV T
s form an Nd-dimensional manifold. Let UΣV T and UsΣsV T

s be the regular and the skinny SVD’s 
of the data matrix W, respectively.

V = [v1 . . . vN ] ∈ RN×N

Vs = [v1 . . . vd ] ∈ RN×d

Then,

V V T (i, j) =
D∑

k=1
vk(i)vk(j)

VsV
T
s (i, j) =

d∑

k=1
vk(i)vk(j)

Let each entry V (i, j) be a variable. Then we have a total of N2 variables. Observe that, V V T generates 
(N2 + N)/2 equations. Therefore, there are (N2 − N)/2 free variables. Since |V (i, j)| ≤ 1, it means that 
the solution space is a compact manifold of dimension (N2 −N)/2 of RN2 . Let’s call this manifold MV .

We will show that when V V T (i, j) = 0, then VsV T
s (i, j) ̸= 0 with probability 1. Assume VsV T

s (i, j) = 0, 
then the number of free variables is decreased by one. The solution to V V T = I and VsV T

s (i, j) = 0 lies 
in a compact manifold in RN2 with dimension (N2 − N)/2 − 1. Let’s call this manifold MV ′ . We further 
know that MV ′ ⊂ MV . Since the probability of having such a submanifold MV ′ in MV is zero, probability 
of having VsV T

s (i, j) = 0 is also 0. Note that the submanifold MV ′ will be even lower dimensional if more 
entries of VsV T

s is assumed to be 0. Also, since we are dealing with finite number of entries, we can conclude 
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that VsV T
s (i, j) = 0 only for measure zero. Finally, note that if the columns of W are picked in such a way 

that the angle between any two columns in uniformly at random, then entries of V will also be uniformly 
at random. ✷

Proposition 1. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are drawn from a union of subspaces 
U as in Assumptions 1. Let the skinny SVD of W be given by W = UΣV T . Then, V V T is a similarity 
matrix, if and only if it is a pre-similarity matrix.

Proof. Assume V V T is a pre-similarity matrix. Without loss of generality, assume that data comes from 
a single subspace S of dimension d. Then, if V V T has a 0-entry, then some of the remaining entries must 
be negative. Otherwise, by Theorem 2, Q = V V T would be a pre-similarity matrix and (V V T )d = V V T

would be a similarity matrix by Corollary 2, and therefore Q has all strictly positive entries, contradicting 
the fact that V V T has a 0-entry. Converse is obvious. ✷

3.2. Similarity matrix via reduced row Echelon form

A subspace segmentation algorithm for independent subspaces based on reduced row echelon form of 
the data matrix W was developed in [33]. A performance analysis based on subspace angles and noise was 
provided. We now use Theorem 2 to provide another view and proof that a similarity matrix ΞW can be 
obtained from reduced row echelon form of W.

The reduced row echelon form of a matrix W of rank r is obtained by the three elementary row operations 
on W to get a matrix of the form rref(W)

rref(W) =
[
R
0

]
, (3.7)

where the r rows of R are linearly independent. We can obtain a similarity matrix from this decomposition 
as follows.

Theorem 5. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are drawn from a union of subspaces 
U as in Assumptions 1. Let R be the matrix in the reduced row echelon form of W (3.7), and let Q be 
the binary or absolute value version of RTR, and dmax = max {di}Mi=1. Then, ΞW = Qdmax is a similarity 
matrix.

Proof. In [33], it is shown that W can be factored as a product of a matrix that is a basis for the column 
space of W and another matrix that is concatenated reduced row echelon form of W.

W = BR (3.8)

where the columns of B are the columns of W corresponding to the pivots of rref(W) is as in (3.7). Then, 
the proof follows from Theorem 2. ✷

Observe that if W is sorted such that the columns drawn from the same subspace are adjacent, then ΞW
is block diagonal. This is a consequence of the fact that reordering columns of W will be reflected in the 
same order in the reduced row echelon form of W.
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3.3. Similarity matrix via skeleton decomposition

Now, we will show that a computationally efficient similarity matrix can be generated using a skeleton 
decomposition of W. For any rank-r matrix Z, we can find a rank-r square sub-matrix A of Z. Then, Z can 
be factorized as Z = CA−1R, where C and R are the column and row restrictions of Z from A.

Theorem 6. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose columns are drawn from a union of subspaces 
U as in Assumptions 1. Let rank(W) = r. Assume A is any rank-r square sub-matrix of W. Further, let 
C ∈ RD×r and R ∈ Rr×D be the column and row restrictions of W corresponding to A, respectively. Let 
P = A−1R, and Q be the binary or absolute value version of PTP . Then, ΞW = Qdmax is a similarity 
matrix for W, where dmax = max {di}Mi=1.

Proof. Without loss of generality, assume that W is sorted as follows:

W = [W1 W2 . . .WM ]

where Wi’s have columns drawn from Si’s. By the independence of subspace and the generic data as-
sumptions, rank(Wi) = di and rank(W) = r = d1 + . . . + dM . Let Ai be any sub-matrix of Wi. Then, 
rank(Ai) ≤ di. Thus, any rank-r sub-matrix A of W must include exactly di columns from each Wi. This 
implies that the corresponding column restriction of A is a basis for W and also it comes from U . The proof 
then directly follows from Theorem 2. ✷

Algorithm 1 provides a simple algorithm for subspace segmentation. Some of the subspace segmentation 
problems involve subspaces of low dimensions, e.g., independently moving rigid body motion segmentation 
problem includes independent subspaces of dimension 4. In such cases, Algorithm 1 is efficient. If the 
subspaces are only approximations, e.g., face/facial expression recognition problem includes approximated 
subspaces of dimension 9. In such cases, Algorithm 1 may not be an ideal choice. Note that the dimensions 
{d1, . . . , dM} can be determined after the columns of W are clustered using ΞW (i.e., rank(Wi) = di). For 
all practical purposes we can set dmax = rank(W) in Algorithm 1 if dmax is not known a priori.

Algorithm 1: Construction of similarity matrix using skeleton decomposition.
Data: A data matrix W = [w1 · · ·wN ] ∈ RD×N whose columns are drawn from union U of M independent subspaces with 

dmax = max {di}M
i=1

Result: Computation of a similarity matrix ΞW
1 r = rank(W)
2 do
3 Pick two index vectors vrow and vcol of size r from {1, . . . , N} (randomly or systematically)
4 Construct A such that A(i, j) = W(vrow(i), vcol(j)), where i and j go from 1 to r
5 while rank(A) ̸= r;
6 Construct a matrix R such that R(i, j) = W(vrow(i), j) with i ∈ {1, . . . , r} and j ∈ {1, . . . , N}
7 Construct matrix P = A−1R

8 Construct the binary (or absolute value) version Q of PTP

9 Construct matrix ΞW = Qdmax

4. Conclusion

In this research, we developed a framework for finding similarity matrices for data that comes from a 
union of independent subspaces. We first showed that, the reduced row echelon form of a data matrix can 
be used to form a similarity matrix. Then, we proved that the shape interaction matrix (widely used in 
literature) is essentially a special case of this framework. Finally, we proposed a new method to compute a 
similarity matrix using the skeleton decomposition.
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