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•Massive	  sizes	  
• Streaming	  data	  
• Distributed	  storage	  
• Parallel	  compu/ng	  pla]orm

New	  considera-ons:

Itera-ve	  greedy	  methods
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Kaczmarz	  Algorithm
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Ini/alize	  arbitrary	  	  	  	  	  	  	  .	  

For	  	  	  	  	  	  	  	  	  	  	  	  	  to	  	  	  	  	  	  	  	  	  	  :	  
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(Niter)

Pseudocode

• Itera/ve	  algorithm	  introduced	  by	  S.	  Kaczmarz	  (1937)	  

• Also	  known	  as	  algebraic	  reconstruc/on	  technique	  (ART)	  

• Special	  case	  of	  projec/on	  onto	  convex	  sets	  (POCS)

• Can	  be	  extended	  to	  find	  least	  squares	  es/mate	  from	  noisy	  measurements	  
(Zouzias	  &	  Freris	  2013)

select	  the	  next	  row

projec-on
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• Strohmer	  and	  Vershynin	  (2009)	  proposed	  randomizing	  the	  order: 
 
	  	  	  

• Guarantees	  exponen/al	  convergence: 
 
 
	  	  

• Works	  for	  arbitrary	  probabili/es	  by	  precondi/oning,	  so	  we	  assume	  row	  	  	  chosen	  with	  
probability	  	  	  	  .

Solu@on:	  Randomized	  Kaczmarz

8

Choose	  row	  	  	  	  	  	  with	  probability	  propor/onal	  to	  	  	  	  	  	  	  	  	  	  	  .ai ||ai||2
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Related	  work

• Error	  bounds	  for	  inconsistent	  systems	  (Needell	  2012)	  
• Almost-‐sure	  convergence	  (Chen	  &	  Powell	  2012)	  
• Extension	  to	  find	  least-‐square	  solu-on	  in	  noise	  (Zouzias	  &	  Freris	  2013)	  
• Block	  Kaczmarz	  (Needell	  &	  Tropp	  2014)
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1. Exact	  MSE	  formula	  and	  decay	  rate

3. “Quenched	  error	  exponent”

2. Op@miza@on	  of	  row	  selec@on	  probabili@es
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product	  of	  random	  matrices
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MSEN = vec IT (EQ⌦Q)N vec(z(0)z(0)T )

EQ⌦Q =
X

i

pi

✓
I � aiaT

i

||ai||2

◆⌦2

where

Proposi-on	  (A.-‐Wang-‐Lu	  2014)

vec —	  vectoriza/on	  operator;	  stack	  columns	  of	  matrix	  into	  vector.

⌦ —	  matrix	  Kronecker	  product.



E||z(N)||2| {z }
MSE

= E||QNQN�1 · · ·Q1z
(0)||2

= Ez(0)TQ1Q2 · · ·QNQN · · ·Q2Q1z
(0)

= E trace(Q1Q2 · · ·QNQN · · ·Q2Q1z
(0)z(0)T )

= E vec(Q1Q2 · · ·QNQN · · ·Q2Q1)
T vec(z(0)z(0)T )

Proof	  sketch

12
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vec(ABC) = (CT ⌦A) vec(B)

trace(AB) = vec(A)T vec(B)

traceAB = traceBA

Matrix	  iden@@es
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Error	  exponent
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E||z(N)||2 = exp(��aN + o(N))

�a
def
= lim

N!1
� 1

N
logE||z(N)||2

MSE	  decays	  exponen/ally:

Error	  exponent

We	  can	  compute	  the	  error	  exponent:

�a = � log �
max

 
X

i

pi

✓
I � aiaT

i

||ai||2

◆⌦2

!

• Can	  be	  computed	  in	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  /me	  
• Must	  be	  posi/ve;	  exponen/al	  convergence	  confirmed

O(mn2)
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, . . . , pm) = argminp �max
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!

Convex	  op/miza/on	  problem:	  minimize	  error	  exponent.

semi-‐definite	  programming
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Fig. 2: Optimal selection probabilities for a non-uniform matrix. The
plot is an equal-area projection of the entire unit hemisphere in R3.
Each row in the matrix is represented by a point on the plot; the color
represents the optimal selection probability computed using cvx.

where

γ
(2)
a = lim

N→∞
−
1

N
logE ∣∣z(N)∣∣4 . (17)

To compute γ
(2)
a , we define

R
(2)
A (p) =

m∑
i=1

pi (P ⊥ai
⊗P

⊥

ai
⊗P

⊥

ai
⊗P

⊥

ai
) , (18)

and have
γ
(2)
a = − logλmax (R(2)A (p)) . (19)

R
(2)
A (p) is an n4

× n4 matrix, but it can be applied in time O(mn4)
instead of the naive O(n8). So finding the largest eigenvalue is not
as complex as one might naively expect.

Figure 1(b) illustrates our argument and shows just how good the
replica method approximation is. We have plotted, on a logarithmic
scale, the error trajectory of many trials as the iterations proceeded.
(Only 150 randomly-selected trials are shown to prevent the figure
from getting too cluttered). We have also plotted the logarithm of
the average error, which matches the linear trendline predicted by the
annealed error exponent γa, and the average of the logarithm of the
error trajectories, which matches the linear trendline predicted by our
approximation for the quenched error exponent γq . The quenched
values are clearly more representative of the typical performance of
the algorithm than the annealed ones. The close match indicates that
our approximation is valid. For comparison purposes, we have also
plotted the upper bound provided by Strohmer et al. [5].

3. OPTIMAL ROW-SELECTION PROBABILITIES

Given a matrix A, we may wish to choose the row selection probabil-
ities p1, p2, . . . , pm that provide the fastest convergence. A tractable
way to do this is to optimize the annealed error exponent γa, which
measures the decay rate of the MSE. This is equivalent to the follow-
ing optimization problem:

(p1, . . . , pm) = argmin
p∈∆n−1

λmax(RA(p)), (20)

where ∆n−1 is the unit simplex in R
n. The function λmax(RA(p))

is convex [15], as is the set ∆n−1, so (20) is a convex optimization
problem (more specifically, it is a semidefinite programming prob-
lem). Thus, finding the optimal probability distribution p is quite
tractable. Note that Dai et al. recently considered an optimized ran-
domized Kaczmarz algorithm [11], in which the row-selection prob-
abilities were chosen to optimize a bound on the MSE’s decay rate.
However, we optimize the exact decay rate of the MSE.

0 10 20
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Dai et al. [11]

Iteration
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ar
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B
)

Fig. 3: Quenched average squared errors versus RKA iteration under
the uniform, Dai et al.’s approximate optimal, and optimal row selec-
tion probabilities, for the 1000 x 3 matrix described in the text.The
average is taken over 1007 trials.

To illustrate the kind of improvement possible by optimizing the
row selection probabilities, and develop some intuition on the opti-
mum choice, we computed the optimal values for a matrix of size
300 × 3. The elements of the matrix were chosen as independent
Gaussian random variables with a variance of 0.5; the columns had
means 0.5, 1, and 2, respectively. We used the cvx convex optimiza-
tion software package to compute the optimal row selection probabil-
ities for this matrix [16,17].

Since the problem is invariant to the scale and sign of each rows,
each row in the matrix A can be represented as a point on the unit
hemisphere. Thus, the matrix and row probabilities can be illustrated
as in Figure 2 by plotting each row as a point on a 2D projection
of a unit hemisphere. We used the Lambert equal-area projection,
which is measure-preserving and therefore allows us to accurately
visualize the sampling density everywhere in the space. The darker
points represent rows that are selected with high probability in the
optimal selection scheme; the lighter ones are selected with lower
probability. We would expect an optimal scheme to choose rows that
are far from any other rows with higher probability than rows that are
in close proximity to many other rows, in order to reduce redundancy
and cover the whole space. The figure conforms to this intuition.

Figure 3 illustrates the improvement of the optimal randomiza-
tion scheme over simply choosing rows uniformly at random. After
20 iterations, the optimal scheme has an error 36 dB lower than the
uniform scheme, and 12 dB lower than the sub-optimal scheme of
Dai et al.

Of course, in practice, there is a tradeoff between the computa-
tion time saved by needing fewer iterations and the computation time
spent determining the optimal row selection probabilities in advance.
The main purpose of the exact optimization proposed in this work
is to develop intuition and validate sub-optimal heuristics. A fast or
on-line method for approximating the optimal probabilities would be
very beneficial for large-scale problems.

4. CONCLUSIONS

We provided a complete characterization of the randomized Kacz-
marz algorithm. This included an exact formula for the MSE and
the annealed error exponent characterizing its decay rate, plus an ap-
proximation for the quenched error exponent that captures the typical
error decay rate. We also explored choosing the row-selection proba-
bilities to achieve the best convergence properties for the algorithm.

n	  =	  3	  lets	  us	  easily	  visualize	  the	  op/mal	  probabili/es

hi
gh
er
	  p
ro
ba
bi
lit
y

Intui-on:	  explorers	  of	  sparsely-‐populated	  regions	  chosen	  with	  higher	  probability
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Fig. 1: (a) Histogram of squared errors after the simulation described in Section 2.3. The errors are plotted on a logarithmic scale to show the
full range of errors; on a linear scale, the histogram is an L-shaped distribution with a spike at the origin and a long, thin tail. The location of
the empirical MSE is overlaid on the histogram (red solid line), as is the exact MSE as given in Proposition 1 (blue dashed line). (b) Of the
3007 simulation trials, the “error trajectories” of 150 randomly-selected trials are plotted here (gray lines). On a logarithmic scale, there is a
clear linear trend. Overlaid on these trajectories is the (annealed) average error trajectory (blue solid line) of all 3007 trials, and the prediction
based on the annealed error exponent (cyan dashed line). We have also plotted the quenched average error trajectory, i.e. the average of the log
of the error (red solid line), and the prediction based on the quenched error exponent (green dashed line) as given in (16). These are much more
representative of the typical behavior of the algorithm. The upper bound of Strohmer et al. [5] is also shown (black dashed line).

2.3. Error Exponents: Annealed vs. Quenched

Proposition 1 confirms earlier bounds showing that the error decays
exponentially. In fact, for generic values of the initial error vector,

we have E ∣∣z(N)∣∣2 = exp(−γaN +o(N)), where γa is the annealed
error exponent, defined by

γa
def= lim

N→∞
−
1

N
logE ∣∣z(N)∣∣2 . (13)

It is not hard to see that γa = − logλmax(RA(p)), where λmax(⋅) is
the largest eigenvalue of a matrix.

To test our result, we simulated 3007 trials of the Kaczmarz al-
gorithm for solving a linear system of dimension 150×20. The same
system was used for each run, as well as the same initial vector. The
matrix A was chosen to have independent standard normal entries
(note that none of our analysis depends on A being drawn in this way,
and similar results can be obtained with other matrices). We tracked
the error after every iteration for each run. The row was chosen uni-
formly at random for each iteration. Figure 1(a) shows a histogram of
the errors after 1000 iterations. The histogram was computed and is
plotted on a logarithmic scale because of the wide range of resulting
errors. The empirical MSE is overlaid on the histogram, as well as
our prediction based on Proposition 1.

It is clear that our prediction matches the empirical value quite
well. However, it is also clear that there is more to the story. Over
90% of the realizations have an error smaller than the mean, which
is more than 102 times smaller than the worst realization. It appears
that the average error is not necessarily a great representation of the
typical error; in reality, there are occasional, rare, extreme failures
that cause the average error to be much higher than the “typical” error.

A more representative measure of the error’s decay rate is the
quenched error exponent:

γq
def= lim

N→∞
−
1

N
E log ∣∣z(N)∣∣2 . (14)

Here, the logarithm of the error is taken before the expectation. The
annealed and quenched error exponents we have defined are formally
similar to Lyapunov exponents of products of random matrices, a
problem well-studied by statistical physicists for use in modeling dy-
namical systems [13]. The terms “annealed” and “quenched” are bor-
rowed from their analysis and have certain physical meanings, but to
us they are just convenient names for two interesting quantities.

The quenched error exponent is far more difficult to analyze
than the annealed one, a fact well known to the physicists [13, 14].
Jensen’s inequality tells us that γq ≥ γa. To obtain more infor-
mation, physicists often rely on non-rigorous heuristics that are
verified numerically or experimentally. One such heuristic is the
replica method, which provides an approximation for the quenched
Lyapunov exponent [13]. The physicists have their own intu-
ition for this approximation, but our engineer’s intuition is quite
simple. The quintessential heavy-tailed distribution is the log-
normal distribution. So let us assume that the error distribution is
∣∣z(N)∣∣2 ∼ log-N (Nµ,Nσ2). Then log ∣∣z(N)∣∣2 ∼ N (Nµ,Nσ2).
The log-normal assumption is supported by the histogram in Figure
1(a): the logarithm of the squared errors appear to follow a Gaus-
sian distribution. The quenched error exponent is seen to be simply
γq = −µ. Now we need to compute the parameters of the distribu-

tion. Under these assumptions, E ∣∣z(N)∣∣2 = exp(N[µ + 1

2
σ2]) and

E ∣∣z(N)∣∣4 = exp(N[2µ + 2σ2]). Solving this system of equations,
we obtain:

µ = 1

N
[2 logE ∣∣z(N)∣∣2 − 1

2
logE ∣∣z(N)∣∣4] . (15)

Thus, our approximation for the quenched error exponent is

γq ≈ 2γa − 1

2
γ
(2)
a , (16)
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ABSTRACT

The Kaczmarz method, or the algebraic reconstruction technique
(ART), is a popular method for solving large-scale overdetermined
systems of equations. Recently, Strohmer et al. proposed the ran-
domized Kaczmarz algorithm, an improvement that guarantees expo-
nential convergence to the solution. This has spurred much interest
in the algorithm and its extensions. We provide in this paper an exact
formula for the mean squared error (MSE) in the value reconstructed
by the algorithm. We also compute the exponential decay rate of
the MSE, which we call the “annealed” error exponent. We show
that the typical performance of the algorithm is far better than the
average performance. We define the “quenched” error exponent to
characterize the typical performance. This is far harder to compute
than the annealed error exponent, but we provide an approxima-
tion that matches empirical results. We also explore optimizing the
algorithm’s row-selection probabilities to speed up the algorithm’s
convergence.

Index Terms— Overdetermined linear systems, Kaczmarz Al-
gorithm, randomized Kaczmarz algorithm

1. INTRODUCTION

The Kaczmarz algorithm [1], also known under the name Algebraic
Reconstruction Technique (ART) [2], is a popular method for solving
a large-scale overdetermined system of linear equations. Let

y =Ax, (1)

where A is a full-rank m × n matrix with m ≥ n. Given y ∈ Rm, the
algorithm proceeds to solve for x as follows: An initial guess x(0) is
chosen arbitrarily. The iterations then start with the first row, proceed
in succession to the last row, and then cycle back to the first row, and

so on. When row r is chosen, the current estimate x(k) is projected

onto the hyperplane {x ∈ Rn ∶ aT
r x = yr} to obtain x(k+1). Here,

aT
r is the rth row of A.

Due to its simplicity, the Kaczmarz algorithm has been widely
used in signal and image processing. It is also a special case of the
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projection onto convex sets (POCS) algorithm [3] for finding an in-
tersection of many convex sets: in our case, we are looking for the
intersection of a set of (n − 1)-dimensional hyperplanes in R

n.

It is well-known that the rate of convergence of the original Kacz-
marz algorithm depends heavily on the exact ordering of the rows in
A [4]. Recognizing this issue, Strohmer and Vershynin proposed in
[5] a randomized Kaczmarz algorithm (RKA) that, instead of cycling
sequentially through the rows in a deterministic fashion, chooses a
row at random at each step. In their paper, they analyzed a specific
probability distribution: choosing row i with probability proportional
to its squared norm ∣∣ai∣∣2. They then showed the following upper
bound on the mean squared error (MSE) of the RKA:

E∥x(N) − x∥2 ≤ (1 − κ−2A )N ∥x(0) −x∥2, (2)

where κA
def= ∥A∥F ∥A−1∥2 is the scaled condition number of A, and

A−1 is its left-inverse. Since κA ≥ √n, the above bound guarantees
that the MSE decays exponentially as the RKA iterations proceed.

The work of Strohmer and Vershynin spurred a great deal of in-
terest in RKA and its various extensions (see, e.g., [6]–[12]). The
original analysis in [5] assumes that the linear inverse problem is
consistent (i.e., noise-free). The noisy case was studied in [7]. A
more general algorithm, involving random projections onto blocks of
rows, was analyzed in [10]. Recently, Zouzias and Freris [9] proposed
a randomized extended Kaczmarz algorithm which converges to the
least squares estimate of an inconsistent system of linear equations.

We provide three contributions in this paper:

1. An exact MSE formula: All previous works on analyzing the
performance of RKA provide strict upper bounds on the MSE. In
this paper, we present an exact closed-form formula for the MSE of
RKA after N iterations, for any N . Due to space constraint, we only
present the noise-free case in this paper. However, the technique we
use can be extended to more general settings as studied in [7,9,10].

2. Annealed and quenched error exponents: We provide an exact
formula for the annealed error exponent, which measures the asymp-
totic rate of decay of the MSE, and we provide a good approximation
for the quenched error exponent, which measures the asymptotic rate
of decay of the squared error during a typical realization of the algo-
rithm.

3. Optimal sampling probabilities: Our exact MSE formula al-
lows us to pose a simple semidefinite programming (SDP) problem,
the solution of which leads to optimal row-selection probabilities to
minimize the MSE of the RKA.
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Fig. 1: (a) Histogram of squared errors after the simulation described in Section 2.3. The errors are plotted on a logarithmic scale to show the
full range of errors; on a linear scale, the histogram is an L-shaped distribution with a spike at the origin and a long, thin tail. The location of
the empirical MSE is overlaid on the histogram (red solid line), as is the exact MSE as given in Proposition 1 (blue dashed line). (b) Of the
3007 simulation trials, the “error trajectories” of 150 randomly-selected trials are plotted here (gray lines). On a logarithmic scale, there is a
clear linear trend. Overlaid on these trajectories is the (annealed) average error trajectory (blue solid line) of all 3007 trials, and the prediction
based on the annealed error exponent (cyan dashed line). We have also plotted the quenched average error trajectory, i.e. the average of the log
of the error (red solid line), and the prediction based on the quenched error exponent (green dashed line) as given in (16). These are much more
representative of the typical behavior of the algorithm. The upper bound of Strohmer et al. [5] is also shown (black dashed line).

Simula@ons

19

10−24 10−22 10−20 10−18 10−16

Predicted MSE
Empirical MSE

∣∣x(N) − x∣∣2

C
o

u
n

t

(a)

0 500 1000

0

−25

−50

Iteration k

lo
g
∣∣ x(

k
)
−
x
∣∣2

Strohmer et al. [5]

Quenched
Annealed

Sample Paths

(b)

Fig. 1: (a) Histogram of squared errors after the simulation described in Section 2.3. The errors are plotted on a logarithmic scale to show the
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3007 simulation trials, the “error trajectories” of 150 randomly-selected trials are plotted here (gray lines). On a logarithmic scale, there is a
clear linear trend. Overlaid on these trajectories is the (annealed) average error trajectory (blue solid line) of all 3007 trials, and the prediction
based on the annealed error exponent (cyan dashed line). We have also plotted the quenched average error trajectory, i.e. the average of the log
of the error (red solid line), and the prediction based on the quenched error exponent (green dashed line) as given in (16). These are much more
representative of the typical behavior of the algorithm. The upper bound of Strohmer et al. [5] is also shown (black dashed line).

2.3. Error Exponents: Annealed vs. Quenched

Proposition 1 confirms earlier bounds showing that the error decays
exponentially. In fact, for generic values of the initial error vector,

we have E ∣∣z(N)∣∣2 = exp(−γaN +o(N)), where γa is the annealed
error exponent, defined by

γa
def= lim

N→∞
−
1

N
logE ∣∣z(N)∣∣2 . (13)

It is not hard to see that γa = − logλmax(RA(p)), where λmax(⋅) is
the largest eigenvalue of a matrix.

To test our result, we simulated 3007 trials of the Kaczmarz al-
gorithm for solving a linear system of dimension 150×20. The same
system was used for each run, as well as the same initial vector. The
matrix A was chosen to have independent standard normal entries
(note that none of our analysis depends on A being drawn in this way,
and similar results can be obtained with other matrices). We tracked
the error after every iteration for each run. The row was chosen uni-
formly at random for each iteration. Figure 1(a) shows a histogram of
the errors after 1000 iterations. The histogram was computed and is
plotted on a logarithmic scale because of the wide range of resulting
errors. The empirical MSE is overlaid on the histogram, as well as
our prediction based on Proposition 1.

It is clear that our prediction matches the empirical value quite
well. However, it is also clear that there is more to the story. Over
90% of the realizations have an error smaller than the mean, which
is more than 102 times smaller than the worst realization. It appears
that the average error is not necessarily a great representation of the
typical error; in reality, there are occasional, rare, extreme failures
that cause the average error to be much higher than the “typical” error.

A more representative measure of the error’s decay rate is the
quenched error exponent:

γq
def= lim

N→∞
−
1

N
E log ∣∣z(N)∣∣2 . (14)

Here, the logarithm of the error is taken before the expectation. The
annealed and quenched error exponents we have defined are formally
similar to Lyapunov exponents of products of random matrices, a
problem well-studied by statistical physicists for use in modeling dy-
namical systems [13]. The terms “annealed” and “quenched” are bor-
rowed from their analysis and have certain physical meanings, but to
us they are just convenient names for two interesting quantities.

The quenched error exponent is far more difficult to analyze
than the annealed one, a fact well known to the physicists [13, 14].
Jensen’s inequality tells us that γq ≥ γa. To obtain more infor-
mation, physicists often rely on non-rigorous heuristics that are
verified numerically or experimentally. One such heuristic is the
replica method, which provides an approximation for the quenched
Lyapunov exponent [13]. The physicists have their own intu-
ition for this approximation, but our engineer’s intuition is quite
simple. The quintessential heavy-tailed distribution is the log-
normal distribution. So let us assume that the error distribution is
∣∣z(N)∣∣2 ∼ log-N (Nµ,Nσ2). Then log ∣∣z(N)∣∣2 ∼ N (Nµ,Nσ2).
The log-normal assumption is supported by the histogram in Figure
1(a): the logarithm of the squared errors appear to follow a Gaus-
sian distribution. The quenched error exponent is seen to be simply
γq = −µ. Now we need to compute the parameters of the distribu-

tion. Under these assumptions, E ∣∣z(N)∣∣2 = exp(N[µ + 1

2
σ2]) and

E ∣∣z(N)∣∣4 = exp(N[2µ + 2σ2]). Solving this system of equations,
we obtain:

µ = 1

N
[2 logE ∣∣z(N)∣∣2 − 1

2
logE ∣∣z(N)∣∣4] . (15)

Thus, our approximation for the quenched error exponent is

γq ≈ 2γa − 1

2
γ
(2)
a , (16)

150	  x	  20	  matrix	  w/	  Gaussian	  entries.
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Fig. 1: (a) Histogram of squared errors after the simulation described in Section 2.3. The errors are plotted on a logarithmic scale to show the
full range of errors; on a linear scale, the histogram is an L-shaped distribution with a spike at the origin and a long, thin tail. The location of
the empirical MSE is overlaid on the histogram (red solid line), as is the exact MSE as given in Proposition 1 (blue dashed line). (b) Of the
3007 simulation trials, the “error trajectories” of 150 randomly-selected trials are plotted here (gray lines). On a logarithmic scale, there is a
clear linear trend. Overlaid on these trajectories is the (annealed) average error trajectory (blue solid line) of all 3007 trials, and the prediction
based on the annealed error exponent (cyan dashed line). We have also plotted the quenched average error trajectory, i.e. the average of the log
of the error (red solid line), and the prediction based on the quenched error exponent (green dashed line) as given in (16). These are much more
representative of the typical behavior of the algorithm. The upper bound of Strohmer et al. [5] is also shown (black dashed line).

Simula@ons

19

10−24 10−22 10−20 10−18 10−16

Predicted MSE
Empirical MSE

∣∣x(N) − x∣∣2

C
o

u
n

t

(a)

0 500 1000

0

−25

−50

Iteration k

lo
g
∣∣ x(

k
)
−
x
∣∣2

Strohmer et al. [5]

Quenched
Annealed

Sample Paths

(b)

Fig. 1: (a) Histogram of squared errors after the simulation described in Section 2.3. The errors are plotted on a logarithmic scale to show the
full range of errors; on a linear scale, the histogram is an L-shaped distribution with a spike at the origin and a long, thin tail. The location of
the empirical MSE is overlaid on the histogram (red solid line), as is the exact MSE as given in Proposition 1 (blue dashed line). (b) Of the
3007 simulation trials, the “error trajectories” of 150 randomly-selected trials are plotted here (gray lines). On a logarithmic scale, there is a
clear linear trend. Overlaid on these trajectories is the (annealed) average error trajectory (blue solid line) of all 3007 trials, and the prediction
based on the annealed error exponent (cyan dashed line). We have also plotted the quenched average error trajectory, i.e. the average of the log
of the error (red solid line), and the prediction based on the quenched error exponent (green dashed line) as given in (16). These are much more
representative of the typical behavior of the algorithm. The upper bound of Strohmer et al. [5] is also shown (black dashed line).

2.3. Error Exponents: Annealed vs. Quenched

Proposition 1 confirms earlier bounds showing that the error decays
exponentially. In fact, for generic values of the initial error vector,

we have E ∣∣z(N)∣∣2 = exp(−γaN +o(N)), where γa is the annealed
error exponent, defined by

γa
def= lim

N→∞
−
1

N
logE ∣∣z(N)∣∣2 . (13)

It is not hard to see that γa = − logλmax(RA(p)), where λmax(⋅) is
the largest eigenvalue of a matrix.

To test our result, we simulated 3007 trials of the Kaczmarz al-
gorithm for solving a linear system of dimension 150×20. The same
system was used for each run, as well as the same initial vector. The
matrix A was chosen to have independent standard normal entries
(note that none of our analysis depends on A being drawn in this way,
and similar results can be obtained with other matrices). We tracked
the error after every iteration for each run. The row was chosen uni-
formly at random for each iteration. Figure 1(a) shows a histogram of
the errors after 1000 iterations. The histogram was computed and is
plotted on a logarithmic scale because of the wide range of resulting
errors. The empirical MSE is overlaid on the histogram, as well as
our prediction based on Proposition 1.

It is clear that our prediction matches the empirical value quite
well. However, it is also clear that there is more to the story. Over
90% of the realizations have an error smaller than the mean, which
is more than 102 times smaller than the worst realization. It appears
that the average error is not necessarily a great representation of the
typical error; in reality, there are occasional, rare, extreme failures
that cause the average error to be much higher than the “typical” error.

A more representative measure of the error’s decay rate is the
quenched error exponent:

γq
def= lim

N→∞
−
1

N
E log ∣∣z(N)∣∣2 . (14)

Here, the logarithm of the error is taken before the expectation. The
annealed and quenched error exponents we have defined are formally
similar to Lyapunov exponents of products of random matrices, a
problem well-studied by statistical physicists for use in modeling dy-
namical systems [13]. The terms “annealed” and “quenched” are bor-
rowed from their analysis and have certain physical meanings, but to
us they are just convenient names for two interesting quantities.

The quenched error exponent is far more difficult to analyze
than the annealed one, a fact well known to the physicists [13, 14].
Jensen’s inequality tells us that γq ≥ γa. To obtain more infor-
mation, physicists often rely on non-rigorous heuristics that are
verified numerically or experimentally. One such heuristic is the
replica method, which provides an approximation for the quenched
Lyapunov exponent [13]. The physicists have their own intu-
ition for this approximation, but our engineer’s intuition is quite
simple. The quintessential heavy-tailed distribution is the log-
normal distribution. So let us assume that the error distribution is
∣∣z(N)∣∣2 ∼ log-N (Nµ,Nσ2). Then log ∣∣z(N)∣∣2 ∼ N (Nµ,Nσ2).
The log-normal assumption is supported by the histogram in Figure
1(a): the logarithm of the squared errors appear to follow a Gaus-
sian distribution. The quenched error exponent is seen to be simply
γq = −µ. Now we need to compute the parameters of the distribu-

tion. Under these assumptions, E ∣∣z(N)∣∣2 = exp(N[µ + 1

2
σ2]) and

E ∣∣z(N)∣∣4 = exp(N[2µ + 2σ2]). Solving this system of equations,
we obtain:

µ = 1

N
[2 logE ∣∣z(N)∣∣2 − 1

2
logE ∣∣z(N)∣∣4] . (15)

Thus, our approximation for the quenched error exponent is

γq ≈ 2γa − 1

2
γ
(2)
a , (16)
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2.3. Error Exponents: Annealed vs. Quenched

Proposition 1 confirms earlier bounds showing that the error decays
exponentially. In fact, for generic values of the initial error vector,

we have E ∣∣z(N)∣∣2 = exp(−γaN +o(N)), where γa is the annealed
error exponent, defined by

γa
def= lim

N→∞
−
1

N
logE ∣∣z(N)∣∣2 . (13)

It is not hard to see that γa = − logλmax(RA(p)), where λmax(⋅) is
the largest eigenvalue of a matrix.

To test our result, we simulated 3007 trials of the Kaczmarz al-
gorithm for solving a linear system of dimension 150×20. The same
system was used for each run, as well as the same initial vector. The
matrix A was chosen to have independent standard normal entries
(note that none of our analysis depends on A being drawn in this way,
and similar results can be obtained with other matrices). We tracked
the error after every iteration for each run. The row was chosen uni-
formly at random for each iteration. Figure 1(a) shows a histogram of
the errors after 1000 iterations. The histogram was computed and is
plotted on a logarithmic scale because of the wide range of resulting
errors. The empirical MSE is overlaid on the histogram, as well as
our prediction based on Proposition 1.

It is clear that our prediction matches the empirical value quite
well. However, it is also clear that there is more to the story. Over
90% of the realizations have an error smaller than the mean, which
is more than 102 times smaller than the worst realization. It appears
that the average error is not necessarily a great representation of the
typical error; in reality, there are occasional, rare, extreme failures
that cause the average error to be much higher than the “typical” error.

A more representative measure of the error’s decay rate is the
quenched error exponent:

γq
def= lim

N→∞
−
1

N
E log ∣∣z(N)∣∣2 . (14)

Here, the logarithm of the error is taken before the expectation. The
annealed and quenched error exponents we have defined are formally
similar to Lyapunov exponents of products of random matrices, a
problem well-studied by statistical physicists for use in modeling dy-
namical systems [13]. The terms “annealed” and “quenched” are bor-
rowed from their analysis and have certain physical meanings, but to
us they are just convenient names for two interesting quantities.

The quenched error exponent is far more difficult to analyze
than the annealed one, a fact well known to the physicists [13, 14].
Jensen’s inequality tells us that γq ≥ γa. To obtain more infor-
mation, physicists often rely on non-rigorous heuristics that are
verified numerically or experimentally. One such heuristic is the
replica method, which provides an approximation for the quenched
Lyapunov exponent [13]. The physicists have their own intu-
ition for this approximation, but our engineer’s intuition is quite
simple. The quintessential heavy-tailed distribution is the log-
normal distribution. So let us assume that the error distribution is
∣∣z(N)∣∣2 ∼ log-N (Nµ,Nσ2). Then log ∣∣z(N)∣∣2 ∼ N (Nµ,Nσ2).
The log-normal assumption is supported by the histogram in Figure
1(a): the logarithm of the squared errors appear to follow a Gaus-
sian distribution. The quenched error exponent is seen to be simply
γq = −µ. Now we need to compute the parameters of the distribu-

tion. Under these assumptions, E ∣∣z(N)∣∣2 = exp(N[µ + 1

2
σ2]) and

E ∣∣z(N)∣∣4 = exp(N[2µ + 2σ2]). Solving this system of equations,
we obtain:

µ = 1

N
[2 logE ∣∣z(N)∣∣2 − 1

2
logE ∣∣z(N)∣∣4] . (15)

Thus, our approximation for the quenched error exponent is

γq ≈ 2γa − 1

2
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(2)
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Quenched	  error	  exponent

�q
def
= lim

N!1
� 1

N
E log ||z(N)||2

• Much	  more	  difficult	  to	  analyze.	  

• Known	  to	  physicists	  as	  the	  top	  Lyapunov	  exponent.	  

• They	  use	  heuris/cs	  to	  solve.

�a
def
= lim

N!1
� 1

N
logE||z(N)||2

Annealed	  error	  exponent

Average	  performance:

Typical	  performance:
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Physicists	  have	  their	  own	  intui/on	  for	  this	  trick,	  but	  we	  can	  get	  the	  same	  result	  by	  
assuming	  the	  error	  is	  log-‐normal:

log ||z(N)||2 ⇠ N (Nµ,N�2
).

Assume

Then

�q = �µ

E||z(N)||2 = exp(N [µ+

1

2

�2
])

E||z(N)||4 = exp(N [2µ+ 2�2
])

Naive	  replica	  method logZ = lim

n!0

Zn � 1

n
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µ =

1

N


2 logE||z(N)||2 � 1

2

logE||z(N)||4
�

Solve

�q ⇡ 2�a �
1

2
�(2)
a

�(2)

a = � log �
max

 
X

i

pi

✓
I � aiaT

i

||ai||2

◆⌦4

!

where

Quenched	  error	  exponent

�q
def
= lim

N!1
� 1

N
E log ||z(N)||2
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Fig. 1: (a) Histogram of squared errors after the simulation described in Section 2.3. The errors are plotted on a logarithmic scale to show the
full range of errors; on a linear scale, the histogram is an L-shaped distribution with a spike at the origin and a long, thin tail. The location of
the empirical MSE is overlaid on the histogram (red solid line), as is the exact MSE as given in Proposition 1 (blue dashed line). (b) Of the
3007 simulation trials, the “error trajectories” of 150 randomly-selected trials are plotted here (gray lines). On a logarithmic scale, there is a
clear linear trend. Overlaid on these trajectories is the (annealed) average error trajectory (blue solid line) of all 3007 trials, and the prediction
based on the annealed error exponent (cyan dashed line). We have also plotted the quenched average error trajectory, i.e. the average of the log
of the error (red solid line), and the prediction based on the quenched error exponent (green dashed line) as given in (16). These are much more
representative of the typical behavior of the algorithm. The upper bound of Strohmer et al. [5] is also shown (black dashed line).

2.3. Error Exponents: Annealed vs. Quenched

Proposition 1 confirms earlier bounds showing that the error decays
exponentially. In fact, for generic values of the initial error vector,

we have E ∣∣z(N)∣∣2 = exp(−γaN +o(N)), where γa is the annealed
error exponent, defined by

γa
def= lim

N→∞
−
1

N
logE ∣∣z(N)∣∣2 . (13)

It is not hard to see that γa = − logλmax(RA(p)), where λmax(⋅) is
the largest eigenvalue of a matrix.

To test our result, we simulated 3007 trials of the Kaczmarz al-
gorithm for solving a linear system of dimension 150×20. The same
system was used for each run, as well as the same initial vector. The
matrix A was chosen to have independent standard normal entries
(note that none of our analysis depends on A being drawn in this way,
and similar results can be obtained with other matrices). We tracked
the error after every iteration for each run. The row was chosen uni-
formly at random for each iteration. Figure 1(a) shows a histogram of
the errors after 1000 iterations. The histogram was computed and is
plotted on a logarithmic scale because of the wide range of resulting
errors. The empirical MSE is overlaid on the histogram, as well as
our prediction based on Proposition 1.

It is clear that our prediction matches the empirical value quite
well. However, it is also clear that there is more to the story. Over
90% of the realizations have an error smaller than the mean, which
is more than 102 times smaller than the worst realization. It appears
that the average error is not necessarily a great representation of the
typical error; in reality, there are occasional, rare, extreme failures
that cause the average error to be much higher than the “typical” error.

A more representative measure of the error’s decay rate is the
quenched error exponent:

γq
def= lim

N→∞
−
1

N
E log ∣∣z(N)∣∣2 . (14)

Here, the logarithm of the error is taken before the expectation. The
annealed and quenched error exponents we have defined are formally
similar to Lyapunov exponents of products of random matrices, a
problem well-studied by statistical physicists for use in modeling dy-
namical systems [13]. The terms “annealed” and “quenched” are bor-
rowed from their analysis and have certain physical meanings, but to
us they are just convenient names for two interesting quantities.

The quenched error exponent is far more difficult to analyze
than the annealed one, a fact well known to the physicists [13, 14].
Jensen’s inequality tells us that γq ≥ γa. To obtain more infor-
mation, physicists often rely on non-rigorous heuristics that are
verified numerically or experimentally. One such heuristic is the
replica method, which provides an approximation for the quenched
Lyapunov exponent [13]. The physicists have their own intu-
ition for this approximation, but our engineer’s intuition is quite
simple. The quintessential heavy-tailed distribution is the log-
normal distribution. So let us assume that the error distribution is
∣∣z(N)∣∣2 ∼ log-N (Nµ,Nσ2). Then log ∣∣z(N)∣∣2 ∼ N (Nµ,Nσ2).
The log-normal assumption is supported by the histogram in Figure
1(a): the logarithm of the squared errors appear to follow a Gaus-
sian distribution. The quenched error exponent is seen to be simply
γq = −µ. Now we need to compute the parameters of the distribu-

tion. Under these assumptions, E ∣∣z(N)∣∣2 = exp(N[µ + 1

2
σ2]) and

E ∣∣z(N)∣∣4 = exp(N[2µ + 2σ2]). Solving this system of equations,
we obtain:

µ = 1

N
[2 logE ∣∣z(N)∣∣2 − 1

2
logE ∣∣z(N)∣∣4] . (15)

Thus, our approximation for the quenched error exponent is

γq ≈ 2γa − 1

2
γ
(2)
a , (16)
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• Exact	  MSE	  formula	  for	  randomized	  Kaczmarz	  algorithms	  (and	  its	  generaliza-ons)

• Annealed	  and	  quenched	  error	  exponents	  give	  decay	  rate

• Finding	  op-mal	  row	  selec-on	  probabili-es

Lioing!

Average	  vs.	  typical	  performance

Convex	  op/miza/on


