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Subspace Segmentation Problem and
Data Clustering

Problem: Let M =
⋃l
i=1 Vi where {Vi ⊂ H}li=1 is a

set of subspaces of a Hilbert space H. Let W ={
wj ∈ H

}m
j=1

be a set of data points drawn from M:
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Subspace Segmentation Problem and
Data Clustering

Problem: Let M =
⋃l
i=1 Vi where {Vi ⊂ H}li=1 is a

set of subspaces of a Hilbert space H. Let W ={
wj ∈ H

}m
j=1

be a set of data points drawn from M:

1. determine the number of subspaces l,

2. determine the set of dimensions {di}li=1,

3. find an orthonormal basis for each subspace Vi,

4. collect the data points belonging to the same
subspace into the same cluster.
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Example 1

Figure 1: Data F belongs to two planes in R3. Left panel:

Starting with two initial clusters, green is supposed to belongs

one cluster, while red is supposed to belong to another cluster.

Right panel: Solution after clustering.
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• Computer vision: Motion tracking in video; face
recognition,...(Kanade, Costeira, Yan, Pollefeys,
Gear, Vidal, Sekmen, ...)
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Motivation

• Computer vision: Motion tracking in video; face
recognition,...(Kanade, Costeira, Yan, Pollefeys,
Gear, Vidal, Sekmen, ...)

• Signal Modeling: Shift-invariant space models;
Signal with finite rate of innovation; etc...
(innovation)(Shannon, Gabor, Do, Lu, Vetterli,
Dragotti, Blu, Sun,...)

• Compressed sensing: Sparsification bases, dictionary
learning,... (Candes, Tao, Vetterli, ...)

• Learning theory: Geometry of high dimensional
data, ... (Coifman, Maggioni, Lerman, ...)
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Noisy

Figure 2: Non-ideal data

– Typeset by FoilTEX –



AWDS 2015

Noisy

Figure 2: Non-ideal data

Data can be corrupted by noise, may have outliers
or the data may not be complete, e.g., there may be
missing data points.
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Structure of talk

1. Existence of solutions to the subspace clustering
problem
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Structure of talk

1. Existence of solutions to the subspace clustering
problem

2. Signal Models: Finding signals structure from finite
data

3. Computer Vision: Motion tracking
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Existence of solution

Given a set of vectors F = {f1, . . . , fm} (the observed
data) in some Hilbert space H, find a sequence of
subspaces {V1, . . . , Vl} ⊂ C minimizing

e(F , {V1, . . . , Vl}) =
∑
f∈F

min
1≤j≤l

d2(f, Vj),

where the class C is a set of closed subspaces of H,
e.g., if H = RN, C the set of subspaces of dimension
less than or equal to r, then

{V 0
1 , . . . , V

0
l } = argmin

{
e(F , {V1, . . . , Vl}) : Vi ⊂ RN , dimVi ≤ r

}
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Figure 3: C = {subspaces of dimensions ≤ 1}. Objective

function: A) e = d2(f1, V2) + d2(f2, V1) + d2(f3, V1); and B)

e = d2(f1, V2) + d2(f2, V2) + d2(f3, V1). Configuration of V1, V2 in

Panel A forced the partition P1 = {f1} and P2 = {f2, f3}, while

the configuration in B forced the partition P1 = {f1, f2} and

P2 = {f3}.
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Characterization in Finite d

e(F , {V1, . . . , Vl}) =
∑
f∈F

min
1≤j≤l

d2(f, Vj), Vi ∈ C

C is any class of subspaces of H. Each Vi is an element
of C. View C as a set of projectors with the weak op.
topology. C+ = C + positive operators.

– Typeset by FoilTEX –



AWDS 2015

Characterization in Finite d

e(F , {V1, . . . , Vl}) =
∑
f∈F

min
1≤j≤l

d2(f, Vj), Vi ∈ C

C is any class of subspaces of H. Each Vi is an element
of C. View C as a set of projectors with the weak op.
topology. C+ = C + positive operators.

Theorem 1 (A.A., Romain Tessera, FoCM 2011)
Suppose H has dimension d. Then TFAE

(i) A solution exists in the class C;

(ii) co(C+) = co
(
C+
)
;

(iii) C+ is closed.
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Signal Models

Find M =
⋃l
i=1 Vi that best describe a class of images

or signals from the observation of a set F of m
images.
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Signal Models

Find M =
⋃l
i=1 Vi that best describe a class of images

or signals from the observation of a set F of m
images.

In most applications, the Vi’s describing the
underlying class of signal are Shift-Invariant Spaces:

V (Φ) := closureL2 span{ϕi(x− k) : i = 1, . . . , n, k ∈ Zd}
(1)

Vn := {the set of all SIS with n generators}
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Signal models for a single subspace

Given a set of functions F = {f1, . . . , fm} ⊂ L2(Rd),
find the shift-invariant space V with n generators
{ϕ1, . . . , ϕn} that is “closest” to the functions of F
in the sense that

V = argminV ′∈Vn

m∑
i=1

wi‖fi − PV ′fi‖2,

where wis are positive weights, and Vn is the set of
all shift-invariant spaces that can be generated by n
or less generators.
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Signal models for a single subspace

Given a set of functions F = {f1, . . . , fm} ⊂ L2(Rd),
find the shift-invariant space V with n generators
{ϕ1, . . . , ϕn} that is “closest” to the functions of F
in the sense that

V = argminV ′∈Vn

m∑
i=1

wi‖fi − PV ′fi‖2,

where wis are positive weights, and Vn is the set of
all shift-invariant spaces that can be generated by n
or less generators.

Although the set F = {f1, . . . , fm} is finite the search
is over infinite dimensional spaces in Vn.
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Theorem 2 (A.A., Cabrelli, Hardin, Molter, ACHA
2007)

Let F = {f1, . . . , fm} be a set of functions in L2(Rd).
Then there exists V ∈ Vn such that

m∑
i=1

‖fi − PV fi‖2 ≤
m∑
i=1

‖fi − PV ′fi‖2, ∀ V ′ ∈ Vn

1. There exists and Algorithms based on Eckhard-
Young SVD.
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Theorem 2 (A.A., Cabrelli, Hardin, Molter, ACHA
2007)

Let F = {f1, . . . , fm} be a set of functions in L2(Rd).
Then there exists V ∈ Vn such that

m∑
i=1

‖fi − PV fi‖2 ≤
m∑
i=1

‖fi − PV ′fi‖2, ∀ V ′ ∈ Vn

1. There exists and Algorithms based on Eckhard-
Young SVD.

2. Error estimate are found.

3. Solution to the Union of Subspaces exists and is
based parts 1 and 2.
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Video motion

Figure 4: Affine projection of path.

Let the “trajectory” of p be w1 = w(p) =
(X1(p), Y1(p), . . . , XN(p), YN(p))t in R2N, where N is the
number of frames. Then V = span{w1, w2, . . . , wk} has
dimV ≤ 4.
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Video motion

Let W = [w1, w2, . . . , wm] be a matrix whose columns
are “trajectories” of m points of l moving objects.
Then, the columns of W belong to a union of l
subspaces M =

⋃l
i=1 Vi with dimVi ≤ 4.

(Loading Art2.mp4)
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Methods

• Sparsity methods (Elhamifar, Vidal, Ma, Soltanolkotabi,
Candes, ...)

• Algebraic methods. e.g., Generalized Principle
component Analysis (GPCA) (Vidal, Ma, Sastry,...)

• Variational methods, e.g., non-linear least squares,
K-subspaces (Tseng, AA, Cabrelli, Molter,
Lerman, ...)

• Statistical, e.g., Multi Stage Learning (MSL),
Random Sample Consensus (RANSAC) (Fischler,
Bolles,...)
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• Spectral Clustering Methods, e.g., local affinity
method (Yan Pollefeys, Lin, Zha, Chen Atev,
Lerman, Szlam, AA, Sekmen...)
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RREF

B = RD, F = {wj}Nj=1 ⊂
⋃
i∈I Si, W = [w1 · · ·wN ] ∈ RD×N
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RREF

B = RD, F = {wj}Nj=1 ⊂
⋃
i∈I Si, W = [w1 · · ·wN ] ∈ RD×N

Suppose that the row reduced echelon form
(Gaussian elimination) gives

rref(W ) =


I1 0 . . . 0 X 0 . . . 0
0 I2 . . . ... 0 X . . . 0
0 0 . . . 0 0 0 . . . 0
... ... . . . IM 0 0 0 X
0 0 . . . 0 0 0 0 0

 (2)
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RREF

B = RD, F = {wj}Nj=1 ⊂
⋃
i∈I Si, W = [w1 · · ·wN ] ∈ RD×N

Suppose that the row reduced echelon form
(Gaussian elimination) gives

rref(W ) =


I1 0 . . . 0 X 0 . . . 0
0 I2 . . . ... 0 X . . . 0
0 0 . . . 0 0 0 . . . 0
... ... . . . IM 0 0 0 X
0 0 . . . 0 0 0 0 0

 (2)

There exists a permutation P such that

rref(W ) = [Block resolved]P,
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if data is generic and subspaces are independent.
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data

W =


2872 138 342 263 1956 2016 1793 801 195 360 1076 1882 1918 2350 83
4041 249 467 516 129 288 2612 769 312 174 241 176 3019 3270 219
2906 4292 352 7240 2861 3072 1847 665 6968 646 1709 2794 2080 2366 1012
5803 1405 657 2498 549 864 3854 687 2158 390 629 628 4711 4654 545
5124 744 2092 1335 662 1056 2835 1116 1131 484 774 762 4867 4546 309
6701 3192 757 5420 775 1248 4502 578 5148 578 919 896 5638 5354 812
7102 1625 802 2862 888 1440 4793 522 2522 672 1064 1030 6059 5666 585
495 223 117 577 322 960 266 247 169 668 866 520 275 430 388
1184 2910 192 8282 435 1152 755 200 1482 762 1011 654 951 970 6320
2065 1117 287 3027 4040 4800 1376 159 715 1360 2920 4100 1797 1662 2172


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data

W =


2872 138 342 263 1956 2016 1793 801 195 360 1076 1882 1918 2350 83
4041 249 467 516 129 288 2612 769 312 174 241 176 3019 3270 219
2906 4292 352 7240 2861 3072 1847 665 6968 646 1709 2794 2080 2366 1012
5803 1405 657 2498 549 864 3854 687 2158 390 629 628 4711 4654 545
5124 744 2092 1335 662 1056 2835 1116 1131 484 774 762 4867 4546 309
6701 3192 757 5420 775 1248 4502 578 5148 578 919 896 5638 5354 812
7102 1625 802 2862 888 1440 4793 522 2522 672 1064 1030 6059 5666 585
495 223 117 577 322 960 266 247 169 668 866 520 275 430 388
1184 2910 192 8282 435 1152 755 200 1482 762 1011 654 951 970 6320
2065 1117 287 3027 4040 4800 1376 159 715 1360 2920 4100 1797 1662 2172



Binary reduced row echelon form of W is Wb:

Wb =


1 0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


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Noisy data

rref(W ) =


I1 x . . . x X x . . . x
x I2 . . . ... x X . . . x
x x . . . x x x . . . x
... ... . . . IM x x x X
x x . . . x x x x x

 (3)
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Noisy data

rref(W ) =


I1 x . . . x X x . . . x
x I2 . . . ... x X . . . x
x x . . . x x x . . . x
... ... . . . IM x x x X
x x . . . x x x x x

 (3)

Threshold?

rref(W ) =


I1 0 . . . 0 X 0 . . . 0
0 I2 . . . ... 0 X . . . 0
0 0 . . . 0 0 0 . . . 0
... ... . . . IM 0 0 0 X
0 0 . . . 0 0 0 0 0

 (4)
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Noisy data
A−1W = rref(W ) ⇒ sensitive to σmin(A) = ‖A−1‖.
Estimation of σmin(A) in terms of relative positions
of subspaces:

Theorem 3 (A, Ali Sekmen) Assume di = dimSi and
D =

∑
i di. Let {θj(Si)}min(di,D−di)

j=1 be the principle
angles between Si and

∑
` 6=i S`. Then

σ2
min(A) ≤ min

i

min(di,D−di)∏
j=1

(
1− cos2(θj(Si))

)1/D

, (5)

where σmin(A) is the smallest singular value of A.
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Performance of rref

Thresholding rref algorithms does not work very well
in the presence of noise. It can be used as initial
stage of an iterative algorithms.
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Performance of rref

Thresholding rref algorithms does not work very well
in the presence of noise. It can be used as initial
stage of an iterative algorithms.

Is there a way of modifying rref algorithm to get
good segmentation even in the presence of moderate
noise?
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Nearness to Local Subspace Algorithm

W an m×N data matrix with columns from a union of
l subspaces of dimensions at most d, possibly noisy.

1. Dimensionality reduction: W → Vr (r ≈ l×d << N)

2. Normalization: Place data of Vr on sphere Sr−1

3. Local Subspace Estimation: For each xi ∈ Sr−1 find
a d-dim. subspace Lloc(xi) nearest to

{
xi, xi1, ..., xik

}
consisting of xi and k ≥ d closest neighbors.

4. Similarity matrix S: Construct an N ×N similarity
matrix based on Lloc(xi).
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5. Spectral clustering: Problem is again a subspace
segmentation for similarity matrix S, but each
subspace is 1-dim. and there are l subspaces.
Apply SVD to obtain Sl = UlΣlV t

l and Cluster the
columns of V t

l (l ×N) using k-means.
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Testing on video motion

Figure 5: Samples from the Hopkins 155 Dataset.
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Testing on video motion

Checker (78) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 6.09% 2.57% 6.52% 4.46% 1.55% 0.83% 1.12% 0.23%
Median 1.03% 0.27% 1.75% 0.00% 0.29% 0.00% 0.00% 0.00%

Traffic (31) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 1.41% 5.43% 2.55% 2.23% 1.59% 0.23% 0.02% 1.40%
Median 0.00% 1.48% 0.21% 0.00% 1.17% 0.00% 0.00% 0.00%

Articulated (11) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 2.88% 4.10% 7.25% 7.23% 10.70% 1.63% 0.62% 1.77%
Median 0.00% 1.22% 2.64% 0.00% 0.95% 0.00% 0.00% 0.88%

All (120 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 4.59% 3.45% 5.56% 4.14% 2.40% 0.75% 0.82% 0.57%
Median 0.38% 0.59% 1.18% 0.00% 0.43% 0.00% 0.00% 0.00%

% classification errors for sequences with two
motions.
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Three motions

Checker (26) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 31.95% 5.80% 25.78% 10.38% 5.20% 4.49% 2.97% 0.87%
Median 32.93% 1.77% 26.00% 4.61% 0.67% 0.54% 0.27% 0.35%

Traffic (7) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 19.83% 25.07% 12.83% 1.80% 7.75% 0.61% 0.58% 1.86%
Median 19.55% 23.79% 11.45% 0.00% 0.49% 0.00% 0.00% 1.53%

Articulated (2) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 16.85% 7.25% 21.38% 2.71% 21.08% 1.60% 1.60% 5.12%
Median 16.85% 7.25% 21.38% 2.71% 21.08% 1.60% 1.60% 5.12%

All (35 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 28.66% 9.73% 22.94% 8.23% 6.69% 3.55% 2.45% 1.31%
Median 28.26% 2.33% 22.03% 1.76% 0.67% 0.25% 0.20% 0.45%

% classification errors for sequences with three
motions.
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Two and Three Motions

All (155 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average 10.34% 4.94% 9.76% 5.03% 3.56% 1.45% 1.24% 0.76%
Median 2.54% 0.90% 3.21% 0.00% 0.50% 0.00% 0.00% 0.20%

% classification errors for all sequences.
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Review article (Open access): A Review of Subspace
Segmentation: Problem, Nonlinear Approximations,
and Applications to Motion Segmentation

http://www.hindawi.com/journals/isrn/2013/417492/

Thank you
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