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Subspace Representations

Monitor/sense with n nodes

v € R" is a snapshot of the system state
(e.g., temperature at each node)

v € R" is a snapshot of the system state
(e.g., traffic rates at each monitor)
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Subspace Representations

Monltor/ sense with n nodes
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Subspace Representations

Monitor/sense with n nodes

ate

Each snapshot lies near a
low-dimensional subspace

S CR"

Using the subspace as a model for the data,
we can leverage these dependencies for
detection, estimation and prediction.
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Estimating Subspaces with Missing Data
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Rigid Structure from Motion object identification
All images and markings from the “Hopkins 155” Dataset, R.
Vidal lab, Johns Hopkins University.
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Estimating Subspaces with Missing Data

Consider an n; X ny (where ny < ng) matrix X of at most rank r. To identify

the column space we may use the SVD. IE-

Now consider observing only a subset Q C {1,...,n1} x {1,...,n2} of X, that
has size || > O(rnalog®(ns)), and solving

minimizen || (X — M)a| + N[ M|,

Completion” (LRMC) show that solving
this optimization recovers X exactly.
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Estimating Multiple Subspaces with Missing Data

Now suppose our data come from at most k£ subspaces, also of at most rank r.
Low rank matrix completion (LRMC) requires O(krns log”(ns)) measurements.
If k is large this could be nearly full sampling. We wish to do better.
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Outline

* Application of Network Topology Identification
from incomplete hopcounts

* High Rank Matrix Completion (HRMC) algorithm
and theory

 K-GROUSE and an EM algorithm

e Results
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Network Topology Identification
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Network Topology Identification

Distance L
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Network Topology Identification

Qiihnat
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Network Topology Identification
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Network Topology Identification

Synthetic Internet Graph

End Hosts

Slides courtesy Brian Eriksson
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Outline

* High Rank Matrix Completion (HRMC) algorithm
and theory
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"High Rank Matrix Completion™ Algorithm

monitors

IP addresses WiFh Brian
10 5 10 |8 20| (15| |10 |10 20 5 Eriksson
and Rob
2 12| |24 14]2 [3 12 1
Nowak
2 s 52 |5 10 15[ |a
16 16 8 24
6 |11 119 2] |2 33
10 15 [2 (39
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"High Rank Matrix Completion™ Algorithm

with Brian
10 |5 |10 |8 20| [15| |10 |10 20 |8 5 Eriksson
and Rob
1 |2 12 |24 142 [3 12 1
Nowak
2 |s 52 |5 10 150 |a s |2
8 |16 16 8 24 16 [16] |8
6 |11 19 |22 |2
5 |10 |4 [13 s 6 4 15
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“High Rank Matrix Completion” Algorithm

10 [5 |10 [8 20 || |as| |0 1o 20 [8 5 with Brian
1 2 |7 12 24 |14 [2 |3 12 1 Eriksson
2 |5 52 [ 10 1 is| fa |5 and Rob
8 (16 |4 16 8 24 |4 16 |16 Nowak

3 6 (11 11 1B [22 2 33 12 11

S| O | N

5 [10 4 |13 (8 6 4 15 |2 (39 |13

* Use enough seeds to guarantee every subspace has one seed
with its neighborhood entirely in the subspace

* Find other columns that are in the seed’s neighborhood
(despite sampling)

 Guarantee matrix completion succeeds
* Show subspaces can be pruned to the correct set

* Guarantee remaining data points (not seeds or neighbors of
seeds) can be assigned to the correct cluster
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“"High Rank Matrix Completion” Theory

with Brian
Eriksson
10 |5 |10 (8 20 15 10 (10 20 |8 5 and Rob
1 2 |7 12| (24142 [3 12 1 Nowak
2 s 52 |5 10 1 |15 4 |5 |2
8 |16 |4 16 8 24 |4 16 |16 8
3 |6 |11 1109 (22 2 33 12 (11 |6
5 |10 4 (13 |8 6 4 15 |2 |39 (13 4

Theorem: Let X be an ni; X no matrix whose columns lie in the union of
k < no subspaces, of rank at most r, which are incoherent and not “too close”

to one another. Let ng = O(n°8™). Then with high probability, the matrix X
can be perfectly reconstructed from O(rnglog®(ns)) observations.
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Why so many data points?
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with Brian
Eriksson
and Rob
Nowak

Use enough seeds to guarantee every subspace has one seed
with its neighborhood entirely in the subspace

Find other columns that are in the seed’s neighborhood
(despite sampling)

Guarantee matrix completion succeeds
Show subspaces can be pruned to the correct set

Guarantee remaining data points (not seeds or neighbors of
seeds) can be assigned to the correct cluster
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Finding neighborhoods with i \
Missing Data ; dist

dist

dist

nq1 ambient dimension, q¢ # overlapping entries, 1o incoherence parameter.

idISt <Ed18t < dlst Wp>1—2exp( q)

q 245
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Why so many data points?

Theorem 2. Let q represent the random wvariable of number of entries observed
i common for two arbitrary vectors in R™ . For some t > 1, if the number of
observations per vector are such that

1 1/2
m > ni/2 max {275, 8 log (5) }

Plg>t)>1-9.

then

On the other hand, if the observation probability is such that m = g(ny) =
O(y/n1), then for ny such that ny > g(n1)?, we have that

P(g >t) <exp(—t/2+1).
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Outline

 K-GROUSE and an EM algorithm
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Faster algorithms

10 [5 |10 |8 20 s 10 |10 20 [8 5

1 |2 |7 12 24 1a |2 |3 12 1
2 b 52 [F 10 1 |15 a 5 |2
A 16 s 24 |a 16 |16 s
3 6 [h1 11 b |22 2 33 12 |11 [e
5 |10 4 ||13 B 5 a 15 |2 39 |13 a

If the subspaces were If the column assignments were known,

known, we could estimate we could estimate the subspace using
the column assignments. low-rank matrix completion.
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A faster algorithm (with Arthur Sz

k-GROUSE

am)

* initialization of k subspaces, either randomly or

using zero-filled distances.

* Assign partially observed vectors to subspaces, and
consider this assignment the new clustering.

* Use the new clustering to estimate subspaces using

low-rank matrix completion.
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A faster algorithm (wit
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n Arthur Szlam)
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“High Rank MC”
calculates masked distances for °

each of O(k log k) seed points

runs matrix completion on an

nxn matrix O(k log k) times for
at least O((k log k)(n,?r)) time.

to prune subspaces, must

consider every (k log k choose

k) subset to find the best set,
gives O(kk) operations.

k-GROUSE

rough initialization of k
subspaces using zero-filled
distances

iteratively chooses a random
vector and updates the
closest subspace in
O(kmr?+n,r) time per update.

Empirically we need O(rn,)
updates, so total time is
O(n,kmrA3 + n;n,r"2)
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+EM algorithm (wit

n Danie

UNIVERSITY OF MICHIGAN
Pimentel)
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EM Algorithm

Initialization (usually random)
of k subspaces

Computes the probability of
each data point belonging to
each of the subspaces

Computes the maximum
likelihood estimate of the
means and covariances

O(n,n,kr) per iteration.

k-GROUSE

rough initialization of k
subspaces using zero-filled
distances

iteratively chooses a random
vector and updates the
closest subspace in
O(kmr?+n,r) time per update.

Empirically we need O(rn,)
updates, so total time is
O(n,kmrA3 + n;n,r"2)
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Outline

e Results
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Speed results on simulated data

High Rank MC 10395.0 655.8 56 (of 100 trials)
3k logk seeds (2.8 hours)
High Rank MC 34162.3 2086.5 100 (of 11 trials)

10k logk seeds (9.5 hours)

k-GROUSE 127.6 0.24 93 (of 100 trials)
(2 minutes)

n,=50, r=4, k=10, n,=40000, sampling = 60%

The success probability of high-rank MC can be improved a great deal by
increasing the # of seeds, which drastically increases the running time.
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Results: Synthetlc Experiment
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Results: Synthetic Network Distance Experiment

Synthetic Heuristically Optimized
Topology (Li, et. al, Sigcomm 2004)

75 monitors and 2,700 end hosts in 12
subnets
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Union of Subspaces Open Questions

* Heuristic K-Subspaces algorithm (developed w/Arthur
szlam) and EM algorithm (w/ Daniel Pimentel) work very
well in practice. Can we prove it?

* Gap between low rank matrix completion sampling
(r log n) and requirements for overlap in calculating
distances (root n)

— We need a way to check the mask of missing entries to
see whether those data would lie in a unique low-
dimensional subspace.
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Thank youl!
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Complete each column EE

using the incomplete data

projection: HUQ - PSQ v H%

Theorem: If [Q2] = O(u(S5)dlogd) and €2 is chosen uniformly with replacement,
then with high probability and ignoring constant factors,

Q| — du(S)

n n

9
v = Psvll2 < Jlva — Psyval2 < jo = Pool2
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Low Rank Models: Union of Sibspaces ™

with Brian Eriksson and Rob Nowak
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Low Rank Models: Union of Sibspaces ™

with Brian Eriksson and Rob Nowak
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Results: Real-World Delay Measurement Experiment

Delay measurements from
100 Planetlab monitors to
over 12,000 P2P end hosts in
an unknown number of
subnets.

Only 80% of the delays were
observed due to system
limitations.

Using 20% of the delays for
estimation purposes.

Slides courtesy Brian Eriksson
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Assigning columns to subspaces

Let the number of samples per column be |2] = m, and consider projecting a
vector v onto subspaces S* of rank r; using Pgi, i = {0,1}. Let the parameters
a1, ag, B1,v1 > 0 and ©(S*) be the incoherence of S*.

(1481)?
m(l - a1) — (ST T2 Bo — sin~! (HU_PSOUHQ)

C(m) = (T ol

Theorem 1. Let § > 0 and m > 3rypu(St)log (2*). Assume that
sin?(Ay) < C(m)sin?(6;) .
Then with probability at least 1 — 40,
lva = Psgvallz < llva — P valli -

In particular, if v € SY and thus 0y = 0, and if 6, > 0, then the result holds as
long as C'(m) > 0.



