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Abstract  

 

Hydrogen is a particularly useful energy carrier for 

transportation. However, there are no sources of 

molecular hydrogen on the planet. An attractive solar-

based approach is bio-hydrogen production, which 

utilizes protein components, Photosystem I (PSI) and 

cytochrome c6 (cyt c6), that function in natural 

photosynthesis. In aiming to increase hydrogen 

production, it is prudent to understand potential 

interactions between PSI with cyt c6, and how they affect 

protein-protein affinity, leading to changes in electron 

transfer, which would lead to overall H2 yield. For this 

research, protein sequences from these systems are 

analyzed by computational approaches, in which we 

propose to predict the interacting residues of the cyt c6-

PSI protein pair. First, the interaction relation is 

mathematically modeled. Then, dynamic programming 

algorithms are proposed to efficiently calculate the 

interaction score and predict the interaction sites. The 

proposed algorithms are applied to 86 pairs of cyt c6 and 

PsaF residue sequences, which have electrostatic 

attraction with each other. Finally, the putative interaction 

sites are analyzed and other chemical properties such as 

net charge of the residue sequences are investigated. A 

preliminary comparison between computational and 

laboratory approaches is also given. 

Keywords: protein-protein interaction, computational 

approaches, cytochrome c6, photosystem I, dynamic 

programming  

 

1 INTRODUCTION  
 

     Solar radiation is an integral component of most 

renewable energy portfolios. This can be via direct 

photovoltaic conversion or via the production of 

molecular hydrogen. Hydrogen is a particularly useful 

energy carrier for transportation. However, there are no 

sources of molecular hydrogen on the planet. Thus it 

remains a difficult challenge to find an efficient and 

environmentally sustainable way of producing, capturing, 

storing highly attractive yet dilute energy source. The 

research shows that the natural process of photosynthesis 

can be redirected to produce molecular hydrogen [1-4]. 

We have characterized and partially optimized protein-

metal hybrid complexes that, when exposed to light, 

generate hydrogen at a high rate and are temporally and 

thermally stable. Future improvement involves further 

kinetic optimization of electron transfer within 

photosystem I. Specifically we are using mutagenesis to 

increase the affinity between cyt c6 and PSI from the 

thermophilic cyanobacterium Thermosynechococcus 

elongates.  We are remodeling this protein-protein 

interface to include new residues that are introduced into 

the native complexes to create binding sites similar to 

those found in green algae and higher plants. The lack of 

a crystal structure for bound binary complex makes 

traditional structural biology tools unavailable to date. 

There have been several low resolution structural 

approaches such as chemical cross-linking that have 

investigated this interaction. For example, a mass 

spectrometric analysis of tryptic peptides from the cross-

linked product revealed specific interaction sites between 

residues Lys27 of psaF and Glu69 of cyt c6 and between 

Lys23 of psaF and Glu69/Glu70 of cyt c6 [5]. Using this 

data, a molecular model of the intermolecular electron 

transfer complex is presented between eukaryotic cyt c6 

and PSI. This work showed that a major contributor to 

this interaction is electrostatic attraction between acidic 

residues on cyt c6 and basic residues on the luminal tail of 

psaF.  

    This paper considers the problem of optimizing the 

electron transfer for bio-hydrogen production by 

photosynthesis and outlines a purely bioinformatics 

approach to look at the natural variability in the 

occurrence of the charged residues in cyt 6 and psaF for a 

large set of paired proteins. Working in conjunction with 

this bioinformatics research, we will verify the role of 

these residues by mutagenesis and optimization of the 

binding affinity to aid the electron transfer for the two 

protein complexes involved (cyt c6 and PSI). Protein 

interactions are important for all aspects of cellular 

functions and how they interact has become a major goal 

in recent years. Since laboratory methods are time and 

cost expensive, some computational approaches have 
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been proposed for predicting protein-protein interaction 

sites. In [6] binding hot spots in protein-protein and 

protein-ligand interfaces are investigated by using Q 

SiteFinder. It requires the protein structures for 3D grids 

based analysis. In [7-8] two machine learning-based 

methods are proposed for identifying interacting residues. 

The methods depend on the datasets with pre-known 

interaction information in learning and training processes. 

In [9], a probabilistic method is proposed. It requires the 

proteins and their motifs that can mediate the protein. 

Therefore, all these computational methods require either 

the protein structures or the datasets with pre-known 

interaction information. The high resolution structures of 

most of PSI and cytochrome proteins are unknown. 

Although the electrostatic and hydrophobic recognition 

sites on PSI are well known, the precise electrostatic 

recognition site on cytochrome is unknown [5].  

     In this research, computational approaches are 

proposed to identify recognition sites of binding and 

electron transfer in cyt c6 and the PSI subunit psaF. The 

approaches are based on pairwise amino acid residue 

interaction propensities. Electrostatic bonds can directly 

contribute in mediating the binding affinity and further 

affect the electron transfer between the two proteins. First, 

the interaction tendencies for electrostatic and hydrogen 

bonds are mathematically modeled. Then, dynamic 

programming algorithms are designed to efficiently 

calculate the interaction scores and predict the interaction 

sites. Since the prediction is based on the interaction 

relations, it can be improved incrementally by adding 

more interaction criteria whenever necessary. The 

proposed algorithms are applied to 86 protein pairs from 

cyt c6 and psaF families, which may potentially share 

electrostatic attractions with each other. The resulting 

putative interaction sites are further analyzed by other 

statistical methods in which chemical properties such as 

total net charge of residue sequences are considered. A 

preliminary comparison to laboratory experiments is also 

given. 

 

2      METHODS 

 

2.1   Interaction Relation Modeling  

     We model the interaction relation between cyt c6 and 

PsaF.  First, electrostatic bond is considered where cyt c6 

is donor and PsaF is acceptor for electron transfer. Then, 

hydrogen bond is considered which contributes to 

interaction stability. Let A be the set of amino acids. The 

amino acids with positive charges are Arginine (R), 

Histamine (H) and Lysine (K); and the ones with negative 

charges are Aspartic Acid (D) and Glutamic Acid (E). Let 

}.,,{ Pand },{ KHRDEN   
An electrostatic bond based 

interaction relation is represented as 

}. yand  |),{( PNxyxRe   

We assign weight to electrostatic bond for each pair of 

amino acid residues in cyt c6 and PsaF protein sequences. 

Given a pair of residue x in cyt c6 and residue y in PsaF, 

if PyNx   and , (x,y) is assigned a positive weight. H 

has 10% positive change that R and K have. Therefore, 

the pair contains H will be assigned a smaller weight. We 

designed two weight schemes. In one scheme, we use a 

window with length l. For pair (x,y), if PyNx   and  , 

(x,y) is still assigned a positive weight if y has a neighbor 

P'y in the window, i.e., the positions of y’ and y in the 

PsaF sequence does not exceed  2/l . It is the same for 

the case PNx   yand  . The weight for electrostatic 

bond based interaction is assigned as follows (Fig. 1):  
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where P’={R,K}, x’ and y’ are the amino acid residues in 

window W of length l, that is, the distance of x and x’ and 

y and y' in the window do not exceed  2/l , respectively. 

In Fig. 1, the window length l is 7. 

 
 

Another weight scheme doesn’t use window but gaps. 

The weight is assigned as follows:  
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     Arginine (R), histamine (H), lysine (K), serine (S), 

threonine (T), asparagine (N), glutamine (Q), tryptophan 

(W)  and tyrosine (Y) can form hydrogen bond. A 

hydrogen based interaction relation is represented as  
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Fig. 1 Weight scheme for electrostatic bond  
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The weight for any pair in hR is assigned as follows:  
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The values of  ,, in the weight schemes can be 

flexible and adjusted at the test time. The total weight for 

any residue pair (x,y) of cyt c6 and PsaF proteins is 

defined as   

),()),(or  y)(x,(),( ' yxWyxWWyxW hee   

     Net charge is another chemical property which may 

relate to electron transfer. Since we consider the attraction 

between two putative interaction residue sequences, we 

calculate the net charge based on side chains but not C 

and N terminals. The amino acids having positive pKa 

values are R, H, K, which are 12.48, 6.10 and 10.53, 

respectively. The amino acids having negative pKa values 

are D, C, E, and Y, which are -3.86, -8.00, -4.07 and -

10.07, respectively [10]. The value of ph changes from 

6.25 to 8 with interval 0.25.  

 

2.2  Algorithms  

    Given a pair of cyt c6 and PsaF protein sequences 

mxxxX 21  and 
nyyyY 21 ,  the algorithms in 

this section use dynamic programming technique to 

predict the interaction sites and extract the corresponding 

interaction residue subsequences X’ from X  and Y’ from 

Y. The algorithms use an n × m matrix to calculate the 

score of interaction for any pair of subsequences in X and 

Y; then track back from the location with the highest score 

to get the pair of interaction residue subsequences.  

     We designed two algorithms. One uses the weight 

scheme with window. In the algorithm, the score at 

),( ji yx  is decided by the score at ),( 11  ji yx and weight

),( ji yxW , where  ),(),( yxWyxW e if only uses 

electrostatic bond and ),( ),(),( yxWyxWyxW he  if it 

uses both electrostatic and hydrogen bonds. The score is 

calculated as follows:  
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The algorithm finds top k scores, and then track back to 

get all k interaction sites and corresponding pairs of 

interaction subsequences. Fig. 2 shows an example of 

calculating matrix S, where X = AELMDSEAE and Y = 

GPRFKYKH,  ),,(),( yxWyxW e  window length =7, α = 

1, and β = 0.22. Since the window length is 7, when 

calculating S[4,5], the window of ELMDSEA and 

GPRFKYK is used. The largest score is 2.56. By tracking 

back from that location until the location with score 0 we 

get the corresponding interaction subsequences: 

   DSEAE 

   RFKYK. 

The second largest score is 1.98. By tracking back from 

that location to the location with score 0, we get the 

interaction subsequences  

   ELMDSEA  

   PRFKYKH. 

The algorithm is given as follows:  

    Algorithm 1 PredicUsingWindow(X,Y,W) 

        Step 1: Calculate matrix S 

              for i = 0 to m do S[i,0] = 0; 

              for j = 0 to n  do S[0,j] = 0; 

              for i = 1 to m 

                  for j =1 to n 

                     S[i,j] = max{S[i,j]+W(i,j), 0}; 

       Step 2: Find k top score in S 

       Step 3: Track back to find k interaction subsequences  

Another algorithm uses the weight scheme without 

window and allows the interaction subsequences have 

gaps. The score at ),( ji yx  is decided by the score at     

),( 11  ji yx , ),( 1 ji yx 
, ),( 1ji yx and weight ),( ji yxW , 

where ),( yxW  ),(' yxWe
 ),( yxWh  or . ),(' yxWe

The 

score is calculated as follows:  
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     Fig. 3 shows an example of calculating score without 

using window, where ),(),( ' yxWyxW e , α = 1, β = 0.22, 

and g = 0.2. The value of g is the penalty for a gap. In the 

matrix S, The largest score is 2.56. The arrows show 

where the value of S[i,j] comes from. By tracking back 

from that location with the largest score until the location 

with score 0 we get the corresponding interaction 

subsequences:  

   DSEAE 

   RFKYK. 

The second largest score is 2.36. By tracking back from 

that location to the location with score 0, we get the 

interaction subsequences: 

A E L M D S E A E

0 0 0 0 0 0 0 0 0 0

G 0 0 0.2 0 0 0.2 0 0.2 0 0.2

P 0 0 0.2 0 0 0.2 0 0.2 0 0.2

R 0 0.2 1 0.4 0.2 1 0.4 1 0.4 1

F 0 0 0.4 0.78 0.18 0.4 0.78 0.6 0.78 0.6

K 0 0.2 1 0.6 0.98 1.18 0.6 1.78 0.8 1.78

Y 0 0 0.4 0.78 0.38 1.18 0.96 0.8 1.56 1

K 0 0.2 1 0.6 0.98 1.38 1.38 1.96 1 2.56

H 0 0.02 0.3 1.02 0.62 1.08 1.4 1.48 1.98 1.1

S 1          2          3         4          5         6          7            8         9

1 

2 

3 

4 

5 

6 

7 

8

Fig. 2  Interaction score matrix S  



 
 

   ELMDSE  

   R– FKYK. 

where there is a gap between R and F. 

 
 

 

The algorithm is as follows:  

     Algorithm 2 PredicUsingGap (X,Y,W) 

          Same as Algorithm 1 except  

          S[i,j] = max{S[i,j]+W(i,j), S[i-1,j]-g, S[i,j-1]-g,  0} 

     In Algorithm 1 and Algorithm 2, k interaction 

subsequences are picked without overlap. The time 

complexity of the algorithms are O(mn).  

 

Remark:  Algorithm1 and Algorithm 2 are time optimal. 

It can be speed up by using multiple processors.  

Theoretically, the algorithms can be similarly executed in 

O(log m log n) time using O(mn / log m) processors in 

CREW PRAM model by A. Apostolico et al.’s approach, 

where m = min {|X|, |Y|}, n = max{|X|, |Y|} and X and Y 

are the pair of protein sequences [11], and O(1) time 

using m + n processors in BSR model [12]. Practically, 

we can using a computer with multiple cores to speed up 

the algorithms as follows: divide the |X| × |Y| matrix S in 

to k×k blocks such that each block have |X|/k × |Y|/k 

elements and can be calculated in O(|X|/k × |Y|/k ) time by 

one processor. First, calculate the blocks in the first 

diagonal are calculated, then the ones in the second 

diagonal, until the ones in the (2k–1)th diagonal. Since the 

calculation on the ith diagonal only depends on the values 

in the (i–1)th diagonal. Each block on the same diagonal 

can be calculated in parallel. Therefore, the problem can 

be solved in ))/)(12(( 2kmnkO    )/( kmnO  time with 

k processors, where mk 1 .  
 
 
 
 
 
 
 
 
 
 
 

 

3. RESULTS   

 

3.1  Input and Output 

      The input dataset, parameters and the output are set as 

follows:  

1) Totally, 86 pairs of protein sequences from cyt c6 

and PsaF are used for the test. The datasets are given 

from Dr. Bruce’s Lab an each pair belongs to the 

same organism and is able to have electrostatic 

attractions with each other.  

2) For each pair of sequences, three interaction sites 

which have top three scores and corresponding pairs 

of interaction subsequences are predicted.  

3) In weight schemes .22.0,1,W and e'  eW  In 

weight scheme .1.0, hW In Algorithm 2, g = 0.2.  

4) For each pair of protein sequences, the original 

sequences, three interaction sites with the scores, 

corresponding interaction subsequences, and net 

charge of each subsequence are output as follows:  
Psaf:MRRLFALILAIGLWFNFAPQAQALGANLVPCKD

SPAFQALAENARNTTADPESGKKRFDRYSQALCGPE

GYPHLIVDGRLDRAGDFLIPSILFLYIAGWIGWVGRA

YLQAIKKESDTEQKEIQIDLGLALPIISTGFAWPAAAI

KELLSGELTAKDSEIPISPR 

c6:MENVGCEENLLRLILVNLLLVIALLCNLTIIYPALA

AETSNGSKIFNANCAACHIGGANILVEHKTLQKSGLS

KYLENYEIEPIQAIINQIQNGKSAMPAFKNKLSEQEIL

EVTAYIFQKAETGW 

1st interaction site information: 

Interaction score: 2.76 

Interaction site location and subsequence in Psaf:  

54-59,  u = KKRFDR  

Interaction site and subsequence in c6:  

106-111, v = EQEILE  

Net charge:  

when ph = 6.25 net charge for u = 3.00395114057246,  

net charge for v = -2.98030929177886 

when ph = 6.5 net charge for u = 3.00209690387591 

net charge for v = -2.98889520136613 

       ……..       

    The datasets and output can be found at webpage 

www.tnstate.edu/faculty/wchen/research.aspx  by clicking 

the title of this paper in publication section. 
 

3.2   Comparison of the Algorithms  

      We compare Algorithm 1 PredicUsingWindow and 

Algorithm 2 PredicUsingGap. For the simplicity, we use 

the electrostatic bond only in the weight schemes. From 

the results, we found that Algorithm 2 tends to give the 

interaction sites that have the same number of the positive 

charged and negative charged residues. For example, for 

the pair of protein sequences in Section 3.1, the first 

interaction site and the corresponding interaction residue 

subsequences predicted from Algorithm 1 are  

      PsaF:       54-59,     u = KKRFDR  

      cyt c6:     106-111,  v = EQE ILE  

A E L M D S E A E

0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0

R 0 0 1 0 0 1 0 1 0 1

F 0 0 0.8 0.78 0.58 0.8 0.78 0.8 0.78 0.8

K 0 0 1 0.80 0.60 1.58 1.38 1.78 1.58 1.78

Y 0 0 0.8 0.78 0.58 1.38 1.36 1.58 1.56 1.58

K 0 0 1 0.78 0.58 1.58 1.38 2.36 2.16 2.56

H 0 0 0.8 0.78 0.58 1.38 1.36 2.16 2.14 2.36

S 1          2          3         4          5         6          7            8         9
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8

Fig. 3  Interaction score matrix without using window  

Fig. 4   k-division of matrix S  
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and the results from Algorithm 2 are  

      PsaF:      55-59,     K_RFDR  

      cyt c6: 106-111,    EQEI LE.  

In the first pair of subsequences, there are five positive 

charged residues (KKRR) and four negative charged 

residues (EEE), and in the second pair of subsequences, 

there are three positive (KDR) and three negative (EEE) 

charged residues. Therefore, the algorithm can be selected 

based on the property to be investigated. 

 

3.3  Comparison of Laboratory and Computational 

Approaches  

    Very little results are known from Laboratory work for 

electrostatic recognition sites between cyt c6 and the 

photosystem I subunit PsaF. In [6], Mass Spectrometry is 

used to precisely identify electrostatic recognition sites 

between the following protein pairs of cyt c6 and PsaF 

sequences (The first more than twenty amino acid 

residues have been skipped from the original protein 

sequences) :  
Psaf:DIAGLTPCSESKAYAKLEKKELKTLEKRLKQYEADS

APAVALKATMERTKARFANYAKAGLLCGNDGLPHLIAD

PGLALKYGHAGEVFIPTFGFLYVAGYIGYVGRQYLIAVK

GEAKPTDKEIIIDVPLATKLAWQGAGWPLAAVQELQRGT

LLEKEENITVSPR 

c6:ADLALGAQVFNGNCAACHMGGRNSVMPEKTLDKAA

LEQYLDGGFKVESIIYQVENGKGAMPAWADRLSEEEIQA

VAEYVFKQATDAAWKY.  

The laboratory approach shows that the cross-lined 

interaction happens in following interaction subsequences:  

     PsaF:     21-28, ELKTLEKR  

 

     cyt c6:  67-81, LSEEEIQAVAEYVFK 

We use the computation approaches to predict the 

interaction site of the same pair. The result from 

Algorithm 1 is  

     PsaF:    22-29,   KTLEKRLK  

     cyt  c6: 64-70,   DRLSEE _E  

and result from Algorithm 2 is  

     PsaF:   15-27,   KLEKKELKTLEKR  

     cyt c6: 64-76,   DRLSEEEIQAVAE.   

Both algorithms accurately predict the interaction site and 

the corresponding subsequences.  

 

3.4 Distribution of Interaction in PsaF and Cyt c6 

     One of the purposes in this research is to investigate 

the locations that electron transfer most possibly happens 

in PsaF and cyt c6 protein families. The algorithms 

predict three top interaction sites for each pair of PsaF and 

c6 protein sequences. Therefore, there are 258 interaction 

subsequences predicted from 86 sequences of PsaF and 

cyt c6, respectively. In order to show the distribution, for 

each position in the sequences of cyt c6 (PsaF), we count 

the number of times it involves and total score it receives 

in 258 putative interaction subsequences. The number of 

interactions and total score at each position i are defined 

as follows: numInt(i) = |S(i)|, and tolScore(i)  =

,  of score
)(  iSs

s where S(i) is the subset of 258 

interaction subsequences in PsaF (cyt c6) and )(iSs if  

position i is included in s. Due to the space limitation, we 

only show the result from Algorithm 1. To avoid the noise 

we skip the first five positions for all sequecnes. In Fig. 5, 

the blue line shows the distribution of interaction numbers 

at each position in PsaF sequences when using 

electrostatic bond in the weight scheme and the red line 

shows the distribution when using both electrostatic and 

hydrogen bond in the weight scheme. We can see that in 

both cases the positions surround 43, 57, 78 and 105 reach 

the peaks. Fig. 6 shows that distribution of interaction 

score in PsaF. In the blue line the peaks are similar to 

these in Fig. 5. In the red line the peak at 78 shits to 97. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 shows the distribution of both interaction number 

and score for cyt c6. It shows no matter using electrostatic 

bond or using both electrostatic and hydrogen bonds the 

number and score of interactions at the positions surround 

71, 109, and 148 reach the peaks. 
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Fig. 5  Distribution of interaction Sites in PsaF 

Fig. 6  Distribution of interaction score in PsaF 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Net Charges and Inference to Interaction  

      The relation of net change and interaction is 

investigated. At each position i in Psa F (cyt c6) sequence 

s, the net charge s(i) is calculated from ph = 6.25 to ph = 8 

at each interval 0.25 use a window of length 7 as follows: 

s(i) = the net charge of subsequence of s from position i – 

3 to i + 3, and the net charge at position i is defined as 

CH(i) =   Ss
is )( , where S is the given 86 PsaF (cyt c6) 

sequences. Fig. 8 shows the net charges for ph = 6.25 and 

ph = 8. We can see that the positions surround 43, 57, 78, 

and 105 in PsaF reaching the peaks in Fig. 5 also reaching 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the positive peaks in Fig. 8. The positions surround 71 

and 109 in cyt c6 that reach the peaks in Fig. 7also reach 

the negative peaks in Fig. 8. However, position 148 

doesn’t reach the negative peak.  

 

4. CONCLUSION 

      We proposed the mathematical model and 

computational approaches for predicting interaction sites 

of Cytochrome and Photosystem I. In the future, we will 

add more interaction criteria into the model and 

algorithms. We will also find more laboratory results to 

compare with the results from computational approaches.  
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Fig. 7 Distribution of interaction number and score in cyt c6 
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Fig. 8  Net charge of PsaF and cyt c6 protein sequences 
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