Dr. Nsoki Phambo

Associate Professor

Dr. Nsoki Phambu

Dr. Nsoki Phambu
Department of Chemistry

Office: Boswell Science Complex
Phone: (615) 963.5335
Email: nphambu@tnstate.edu


PROFESSIONAL SUMMARY

Nsoki Phambu obtained a BS in physical chemistry from Denis Diderot University (Paris VII), followed by a MS and PhD in chemistry and molecular physical chemistry at Henri Poincare University of Nancy in France. In 1999, Dr. Phambu joined the faculty in the department of Natural Sciences at Johnson C. Smith University, Charlotte NC. In 2004, Dr. Phambu joined the faculty in the department of chemistry at Tennessee State University.

RESEARCH INTERESTS 

Dr. Phambu's research interests include investigating the interactions between different biological systems and membrane constituents, with special emphasis on the role of endogenous/exogenous metal ions. Biophysical approaches such as Raman (main tool), infrared (IR), circular dichroism (CD), NMR, fluorescence, UV visible and diffusion scattering techniques are employed.

CURRENT RESEARCH PROJECTS

Interactions between antimicrobial peptides and model membranes in the presence of metal ions

The objective is to investigate the effect of metal ion binding on the secondary and tertiary structure of antimicrobial peptides in the presence and absence of phospholipids using infrared, Raman, CD, UV visible, and fluorescence techniques as well as NMR. Several spectroscopic techniques such as IR, Raman, NMR, fluorescence, and UV visible techniques are used in a complementary way to discern structural changes in both antimicrobial peptides and phospholipid membranes in the presence of selected cations.

Identification and mapping of compounds such as pharmaceuticals, proteins, vitamins, carbohydrates in natural products or biological samples using Raman microscopy.

Trends in analytical chemistry are towards simple and less time consuming analytical methods. We propose the use of Raman + infrared spectroscopes to fully characterize the components of natural products or any biological samples. The objective of this work is to identify the biomolecules present in a natural product or biological sample. The targeted biomolecules are proteins, carbohydrates, lipids. Etc.. The conformation of proteins is determined using the decomposition of the infrared amide I band (self-deconvolution, second derivative enhancements techniques and curve-fitting procedures) and the special (physical) distribution of the biomolecules in natural products or biological samples is obtained using Raman spectral imaging.