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Abstract. The well known SIR models have been around for
many years. Under some suitable assumptions, the models pro-
vide information about when does the epidemic occur and when it
doesn’t. The models can incorporate the birth, death, and immu-
nization and analyze the outcome mathematically. In this project
we studied several SIR models including birth, death and immu-
nization. We also studied the bifurcation analysis associated with
the disease free and epidemic equilibrium.

1. Introduction

Based on some mathematical assumptions, it is known that epi-
demics can be modeled mathematically in order to study the severity
and prevention mechanism. This model (SIR) is used in epidemiology
to compute the number of susceptible, infected, and recovered people
in a population at any time. It can be used to explain the change in the
number of people needing medical attention during an epidemic. The
whole population is divided into three classes, S, the number of suscep-
tible, I, the number of infected and R, the number of recovered during
an epidemic. This model assumes that the total population remains
the same with closed demography meaning that there is no birth and
no natural death. Any disease related death, however, can be included
in R.We study the basic SIR model with some reasonable assumptions.
Then we include herd immunity, birth and death into the model. The
constant vaccination at birth is also considered . The ultimate goal is
to model the issue of saturated susceptible population, the time delay
of infected to become infectious, the stability of equilibrium solutions
and associated bifurcation.
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Definition 1. Susceptible individuals are individuals that have never
been infected and they are able to catch the disease. Once they have it,
moving into the infected compartment. Infected individuals can spread
the disease to susceptible individuals. Recovered individuals in the re-
covered compartment are assumed to be immune for life.

Let S(t) be the number of susceptible individuals I(t) be the number
of infected individuals and let R(t) be the number of recovered indi-
viduals at time t respectively. It is also assumed that S + I + R = N.
Also we normalize this sum by dividing each of the variables by N. We
still denote the new variables by the same letters S, I and R.

2. The SIR Models

SIR models have been around for many years, for example [3, 5, 4,
2, 6] and the references there in. The first one was introduced and
published in 1927, in ”Contribution to the Mathematical Theory of
Epidemics”, written by William Kermack and Anderson McKendrick.
They introduced the important compartments, which make up the SIR
model, S- susceptible, I - infected and R - recovered. They searched
for a mathematical answer as to when the epidemic would terminate
and observed that, in general whenever the population of susceptible
individuals falls below a threshold value, which depends on several
parameters, the epidemic terminates.

2.1. The Basis Model. The population is fixed so S + I + R = 1.
The disease spreads through the interaction of susceptible and infected.
We assume that only a fraction of this interaction causes the disease
to pass from an individual ( I) to a susceptible individual (S.) So the
rate of change of S is proportional to the product of S and I. We
assume that the individuals recover at a rate of β so the period of
infection is 1

β
days. The only way a person can leave the susceptible

group is to become infected. The only way a person can leave the
infected group is to become recovered. Once a person is recovered, the
person is no longer susceptible and is immune. Age, sex, race and social
status do not affect the probability of a person being affected. There
is no inherited immunity at this time. The people of the population
mix homogeneously. Based on the above assumptions the differential
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equations governing the disease can be modeled as

dS

dt
= −αSI

dI

dt
= αSI − βI(1)

dR

dt
= βI

Remark. Since the total population is assumed to be constant, the
third equation can be derived from the first two. Basically we study
the first two in detail.

It turns out that the epidemic occurs if dI
dt

> 0, it doesn’t if dI
dt

< 0. So

for the epidemic to occur we have to have αS > β implying S > β
α
. For

the epidemic to terminate the rate of change of I has to be negative,
this implies that

S <
β

α
.

The phase portrait Figure 1 shows this too.

Figure 1. The Phase Portrait of SIR model

Definition 2 (Basic Reproductive Number). The basic reproductive
number R0(the average number of persons infected by one case in a
totally susceptible population in absence of interventions aimed at con-
trolling the infection). Since S = 1 initially, the ratio αS

β
= α

β
= R0.

This is one of the most important parameters in the SIR modeling of
any epidemic. R0 is especially important in this case as it will inform
one as to when an epidemic is in progress. So if R0 > 1 an epidemic
will occur and if R0 < 1 there will be no epidemic. The values of R0 are
known for various diseases. For example for Swine flu, it is reported to
be 1.3− 1.6 in [1]

The first two equations can be solved for I and S as in [3] The
variation of I versus S can be seen from the figure provided Figure 2.

The solutions of I vs. S can be written as, [3].

(2) I(S) = −S +
1

R0

lnS + 1.

The graphs of this equation 2.6 are shown for different values of R0. The
system of equations can be solved for several values of the parameters.
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Figure 2. The graphs of I vs. S, for different values of R0

The typical solutions of the above equations are shown in Figure3,
using Matlab.

Figure 3. The general solutions over time

2.2. Herd Immunity. For this portion of the model we use p to be
the proportion of susceptible population that is immunized before the
outbreak of an epidemic and assume the above mentioned conditions,
new equations governing the disease can be written as.

S ′ = α(1− p)SI(3)

I ′ = α(1− p)SI − βI

An outbreak of the epidemic mathematically means that

I ′ > 0 ⇒ α(1− p)SI − βI > 0

⇒ α(1− p)S > β

⇒ (α/β)(1− p)S > 1

⇒ R0 >
1

1− p

Note. The value of R0 is apprx. 1.6 for Swine flu [1]. The above
inequalities says that at least 38% need to be immunized in order to
contain the disease.

2.3. SIR with birth and death. As a modification to the SIR model
we introduce birth and death. We assume that all death is natural. The
variable m is used to represent a constant rate of birth and death. The
basic reproduction number is now given by R0 = α

β+m
.The new equa-

tions with the consideration of birth and death are:

Figure 4. The possible solution curves for a particular disease
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dS

dt
= m− αI −mS(4)

dI

dt
= αIS − (m+ β)I

The system of equations have two equilibrium solutions.
The disease free equilibrium,

(S1, I1) = (1, 0)

and the epidemic equilibrium,

(S2, I2) =

(
β +m

α
,
m

α
(R0 − 1)

)
.

The eigenvalues of the Jacobian matrix reveal the stability of these
equilibrium solutions. The Jacobian matrices are computed as

J |(S1,I1) =

(
−m −α
0 α− β −m

)

J |(S2,I2) =

(
−m− (R0 − 1)m −α

R0

(R0 − 1)m 0

)
The eigenvalues of J |(S1,I1) are −m and α − β − m. They are both
negative if α − β − m < 0 ⇒ R0 < 1. In this case the eigenvalues of
the Jacobian J |(S2,I2) are both negative. So the disease free equilibrium
is locally stable and the epidemic equilibrium is unstable. Likewise
if R0 > 1, the eigenvalues of J |(S1,I1) are of opposite sign and that
of J |(S2,I2) are both negative. So the epidemic equilibrium is locally
stable and the disease free equilibrium is unstable. Authors [4] have
mentioned that these locally stable equilibrium are global as well. The
value of R0 = 1, thus provides the bifurcation point for the system.

2.4. Constant Vaccination at Birth. For this particular model we
introduce certain assumptions that involve a constant vaccination for
the newly born, which will enter our population. A proportion p of the
new born population has the constant vaccination, while others will
enter the population susceptible to infection. We still assume that the
population is constant.

dS

dt
= (1− p)m− (αI +m)s
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The number of infected is still represented as:

dI

dt
= αSI −mI − βI

It has two equilibrium solutions. The disease free equilibrium,

(S1, I1) = (1− p, 0),

and the epidemic equilibrium,

(S2, I2) =

(
β +m

α
,
mR0(1− p)−m

α

)
.

The Jacobian at these equilibrium solutions are computed to be

J |(S1,I1) =

(
−m −α(1− p)
0 −β −m+ α(1− p)

)

J |(S2,I2) =

(
−R0m(1− p)− 2m −β −m
R0m(1− p)−m 0.

)
It can be seen from the eigenvalues of these matrices that if R0(1−p) <
1, the disease free equilibrium is stable while the epidemic equilibrium
is unstable. If R0(1 − p) > 1, then the disease free equilibrium is
unstable and the epidemic equilibrium is stable. It follows that when
R0(1− p) = 1, the bifurcation occurs. This value of p as in [1] is called
a critical vaccination. So the critical vaccination, denoted by pc, as
in [1], is given by pc = 1− 1

R0

Example. The value of R0 for Measles is known to be 16 − 18. So the
critical vaccination for this epidemic turns out to be 94.4%. If the new
born are vaccinated at a rate higher than 94.5%, then the population
will move towards the disease free equilibrium.

2.5. Saturated Susceptible population. In the case that the birth
and death rate are not constant. There are specific assumptions that
must be taken into account. These assumptions are that susceptible
individuals, S(t), are born at a rate M(S, I, R), which is a function of
the densities of the susceptible, infected, and recovered hosts. Suscep-
tibles are infected at a given rate given by the product of the densities
of susceptible and infected hosts.

dS

dt
= RS − RS2

K
− αSI
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The number of infected is still represented as:

dI

dt
= αSI − βI −MI

When both host types are well mixed and encounters are random, it
is known as mass action kinetics derived from chemical kinetics. In-
fected hosts recover at a rate β. Susceptible and recovered host die at
a rate m, which describes the natural death rate due to causes unre-
lated to the infection. Infected host die at a rate m, which includes
both natural death and disease induced death. It has two equilibrium
solutions. The disease free equilibrium,

E0 = (N, 0) = (1, 0)(
m+ β

α

)
and the epidemic equilibrium,

E1 = (S∗, I∗)

(mS∗ + β)(R0 − 1)

where R0 =
α

m+β
,is the reproduction number which denotes the number

of individuals infected by a single infected individual placed in a totally
susceptible population. The Jacobian at these equilibrium solutions are
computed to be

J |(S1,I1),(0,0) =

(
r 0
0 −β −m

)

J |(S2,I2),(K,0) =

(
−r −αK −m
0 −β + αK −m.

)
where R0 = α

m+β
,is the reproduction number which denotes the num-

ber of individuals infected by a single infected individual placed in a
totally susceptible population.

2.6. Delay. The delay SIR Epidemic Model makes the assumption
that the people in the susceptible group are infectious and carry the
disease but only after a certain period of time are they infected.

S ′(t) = RS(t)(1− S(t)

K
− βS(t)I(t− T )

1 + σS(t)
= 1.
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I ′(t) =
βS(t)I(t− T )

1 + σS(t)
− αI(t)− αI(t) = 0.

For this project the two equilibrium solutions have been set to 0 and 1
to see if there is an epidemic or a disease free occurence. We are able
to disipher between the two by finding the infection free equilibrium
E0 = (0, 0), E1 = (k, 0).

E+ = (S∗, I∗) = (
α + α

β − σ(α + α)
,

rS∗2

k(α + α)
(R0 − 1)

In conclusion, we see that over a certain period the population is sus-
ceptible and infectious, but not everyone is infected at one specific
time period. It takes a cetain period of time for infection to circulate
throughout a population.

3. Conclusion

In conclusion, we reviewed, analyzed, and discussed the continu-
ous SIR epidemic model. Various parameters were discussed such as
the act of the SIR model incorporating birth and death, herd immu-
nity, constant vaccination, critical vaccination, saturation, long-term,
as well as delay. It was concluded that the model relies on critical val-
ues such as α, being our transmission rate, β, being recovery rate, R0,
our basic reproduction number, determining epidemic status in popu-
lation, p(portion of population vaccinated), k(capacity of population),
m(birth and death rate), σ(saturation rate), and r(growth rate). The
model relies on these vital parameters because they all play a part in
determining epidemic status in population, in other words, whether or
not there will be an epidemic in a society and therefore, determining
the precaution measures to be made. The SIR model has proven to be a
reliable mathematical tool for examining epidemiology in a population.
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