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Abstract

The purpose of this paper is to analyze and understand three different models for action potential cell processes
in computational cell biology. The three models were: Hodgkin-Huxley, FitzHugh-Nagumo, and Morris-Lecar. Using
differential equations, linear algebra, and computer assisted simulations in the computer program MatLab, we were
able to approximate numerical solutions and do phase portrait analysis and bifurcation analysis for each of the three
models. We also came up with a modified form of the FitzHugh-Nagumo model using a Sine Function.
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1 Introduction

A considerable question to answer is how does the body process information. For example, if a person touches a hot
stove with his or her hand, the hand must send information to brain, which registers the data and sends a message back to
the hand to pull away. In order to understand the dynamics of the process, it is important to understand the composition
of neuron cells and nerve impulse transmission. In this paper, we will analyze a few proposed models that describe how
information is transmitted through a neuron.

To begin with, it is important to note the physical make up of a cell. The cell membrane is a bi-layer that is per-
meable to certain materials. In other words, it allows some materials to pass through it while blocking the passage of
others. During naturally occurring processes, some ionic compounds such as potassium chloride (KCl) will disassociate
and try to diffuse through the cell membrane. Since the cell membrane is selectively permeable to K+, the K+ will diffuse
through the cell membrane leaving the Cl− behind. The process will create a positive net flow of charge into or out of
the cell depending on the concentration difference. Consequently, there will be a electrical potential difference with one
side of the cell membrane more positive than the other. Hence, the cell membrane can be viewed as a capacitor with
the bi-layer being two charged plates. Thus, the cell membrane has a capacitance, an assumption needed to derive the
subsequent nerve impulse transmission models.

Accordingly, let there be a stimulus, such as the heat from the stove, the brain must send a signal to the hand to
pull away. The brain sends messages through the body via electrical currents, also known as action potentials. When a
stimulus is applied, a sodium ion channel opens up and allows an influx of sodium ions to come into the cell. The cell
is generally polarized, however when the sodium rushes into the cell, the cell becomes depolarized at that point. Once
the cell reaches a threshold potential more sodium ion channels open up and the depolarization moves down the cell.
This process is called the action potential. Once the action potential has passed, the sodium ion channels close, and the
sodium-potassium pump works to get the cell back to its normal resting potential, which is around −70 mV .

The modeling of the forementioned process through mathematics is difficult, but there are several approaches. A well
accepted approach is the Hodgkin-Huxley model proposed in 1952 by Alan Lloyd Hodgkin and Andrew Huxley. The
Hodgkin-Huxley model consists of four differential equations, which is hard to analyze. Therefore, there are simpler
models that exhibit the behavior of the Hodgkin-Huxley model qualitatively. Two such models we will examine are the
FitzHugh-Nagumo model and Morris-Lecar, both of which are only a set of two differential equations; thus, they will be
simpler to analyze and solve.

2 Hodgkin-Huxley Model

2.1 Derivation of Hodgkin-Huxley Model

The Hodgkin-Huxley model is based on the idea that the electrical properties of a segment of a cell membrane can be
modeled by an equivalent circuit. In the picture below, one can see the flow of current (denoted by I) through the circuit.
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Above: The equivalent circuit to a segment of the cell membrane.

Picture from http://thephysicsdomain.com/2013/03/28/047-hodgkin-huxley-hysteria/

Because a cell membrane behaves very much like a capacitor, the derivation of the Hodgkin-Huxley model for ion
transport across a cell membrane begins with the general physical definition of capacitance:

C =
Q(r, t)

V (r, t)
(1)

with
r = r(x, y, z), (2)

where C is capacitance, r is the spatial coordinates vector, Q(r, t) is electrical charge as a function of space and time
and V (r, t) is electric potential (or voltage) as a function of space and time. For a cell membrane, provided that the
membrane capacitance (now denoted by Cm) remains constant and electric current is the rate of change of electric charge
with respect to time (∂Q∂t ), conservation laws dictate that the capacitive current, denoted by I(V, r, t), would be

∂Q

∂t
= Cm

∂V

∂t
= I(V, r, t) = −∇ · J(r) + Iion(V, t) (3)

where, Iion(V, t) is the cell membrane current and J(r) is the space dependent current vector. So, more specifically,
Equation (3) becomes

Cm
∂V

∂t
= −∇ · J(r) + Iion(V, t), (4)

However, using space clamps positioned at specific points along the membrane will make the voltage uniform across the
system, meaning that the space dependence can be ignored, i.e.

∇ · J(r) = 0 (5)

reducing Equation (3) further down to

Cm
dV (t)

dt
= Iion(V, t). (6)
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Now consider the movement of an ion A across the membrane, moving transverse to Iion. The transverse potential
drop across the membrane due to the concentration differences caused by this movement is given by the Nernst Potential:

VA =
RT

zF
ln

[A]e
[A]i

, (7)

where [A]i and [A]e denote respective internal and external concentrations of the ion A, R is the universal gas constant, T
is absolute temperature, F is Faraday’s constant, and z is the charge of ion A. The potential drop across the membrane
due to a transverse electrical current is denoted by 1

g (Iτ ), where g is the membrane conductance. Summing these two

potential drops (yielding the total potential V ) and than solving for the transverse current yields

Iτ = g(V − VA). (8)

For multiple types of ions moving across the membrane the transverse current becomes

Iτ =
∑
j

gj(V − Vj). (9)

where j is the number of ion types (including leakage).

Using the principle in Kirchoff’s current law that the sum of all currents in a closed system equals zero, or∑
k

Ik = 0, (10)

we can deduce that
Iion + Iτ = 0⇒ Iion = −Iτ . (11)

When a disturbance occurs (such as external stimuli acting on the cell), then the sum of the two former currents will equal
the external or applied current (denoted by Iapp), giving us

Iion = −Iτ + Iapp, (12)

which yields our first differential equation:

Cm
dV (t)

dt
= −

∑
j

gj(V − Vj) + Iapp. (13)

Note: Iapp here is in units of µA/cm2 and could either be constant or a function of time (e.g. sinusiodal current).

When a stimulus occurs, the sodium ion channels open and there is an influx of sodium ions rushing into the cell. Once
the action potential has moved further along the cell axon the sodium ion channels close and the potassium ion channels
open. For this system with sodium (Na) and potassium (K) ions passing across the cell membrane (with some ion leakage
L), Equation (13) becomes

Cm
dV (t)

dt
= − ¯gNa(V − VNa)− ḡK(V − VK)− gL(V − VL) + Iapp, (14)

with gL being an experimentally determined constant. If the values of ḡK and ¯gNa are also held constant, the model
breaks down. Therefore, the membrane conductances of Sodium and Potassium must be treated as functions of voltage
as well as time, i.e

¯gNa(V, t) = FNa(V, t) (15)

ḡK(V, t) = FK(V, t) (16)

making the Sodium conductance

∂ ¯gNa
∂t

= fNa(V, t) = gNam
3h, (17)
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now with gNa being an experimentally determined constant, m being the sodium ion activation gates (there are three
between the space clamps, hence m3 which is consistent with experimental data), and h being the sodium ion deactivation
gate. Both m and h are functions of time and satisfy the following two differential equations:

dm(t)

dt
= αm(V )(1−m)− βm(V )m (18)

dh(t)

dt
= αh(V )(1− h)− βh(V )h, (19)

where the coefficients αm(V ), βm(V ), αh(V ), and βh(V ) are all experimentally determined functions of voltage. Similarly
for Potassium, the conductance is

∂ḡK
∂t

= fK(V, t) = gKn
4, (20)

with gK now also being an experimentally determined constant and n being the potassium ion influx gates (there are four
between the space clamps, hence the n4 which also is consistent with experimental data), which is a function of time and
satisfies the last of four differential equations:

dn(t)

dt
= αn(V )(1− n)− βn(V )n, (21)

where the coefficients αn(V ) and βn(V ) are also functions of voltage determined by experimental results.

Using experimental data, Hodgkin and Huxley chose the following values for these six coefficient functions of voltage:

αm(V ) =
(0.1)(25− V )

e( 25−V10 )− 1
(22)

βm(V ) = 4e
−V
18 (23)

αh(V ) = (0.07)e
−V
20 (24)

βh(V ) =
1

e( 30−V10 ) + 1
(25)

αn(V ) =
(0.01)(10− V )

e( 10−V10 )− 1
(26)

βn(V ) = (0.125)e
−V
80 . (27)

Thus, our system of four differential equations modeling the behavior of a stimulated cell membrane is:

Cm
dV (t)

dt
= −gKn4(V − VK)− gNam3h(V − VNa)− gL(V − VL) + Iapp

(28)

dm(t)

dt
= αm(V )(1−m)− βm(V )m

(29)

dh(t)

dt
= αh(V )(1− h)− βh(V )h

(30)

dn(t)

dt
= αn(V )(1− n)− βn(V )n

(31)

with conductance constants:

gK = 36µS/cm2

gNa = 120µS/cm2

gL = 0.3µS/cm2 (32)
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ion voltage constants:

VNa = 115mV

VK = −12mV

VL = 10.6mV (33)

membrance capacitance constant:

Cm = 1.0µF/cm2 (34)

and initial conditions for membrane potential and the dimensionless gating variables:

V (0) = −70mV

m(0) = 0

h(0) = 0

n(0) = 0 (35)

2.2 Analysis of the Hodgkin-Huxley Model

Because it is impossible to find an explicit solution for the Hodgkin-Huxley model, computer simulations are required
to approximate the graphs of the system of equations. To analyze what the model means, we first simulate the membrane
potential as a function of time with no applied current (Iapp = 0µA/cm2) and the dimensionless gating variables, each as
a function of time, with a time period of 150 milliseconds.
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From these graphs, we can see that without an external stimulus, there will be one oscillation and then the membrane
returns to equilibrium. Because of the complexity of this system, there will always be at least one spike no matter what
the initial conditions are.

Hodgkin-Huxley: Constant Current
When a constant external current is applied (e.g. Iapp = 20µA/cm2), there will be continuous oscillations, as shown in

the following graphs:
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Because the applied current is constant, the oscillations are smooth and steady. If the applied current is below 6.26
µA/cm2 (say Iapp = 6.25µA/cm2) the oscillations will fall off within the 150 millisecond time period.
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At 100 µA/cm2, the oscillations are a lot smaller after the initial spike but don’t die off yet within the 150 millisecond
time period.
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By 175 µA/cm2, the oscillations are dying off quickly and returning to equilibrium within the 150 millisecond time period
once again.
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Hodgkin-Huxley: Sinusiodal Current
If instead of a constant external current, we apply an in-phase sinusiodal current with an angular frequency of 1 rad/s

and an amplitude of 20 µA/cm2 (e.g. Iapp = 20 sin t) our graphs are:
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giving us bumpier yet continuous oscillations.
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Phase Portrait Analysis
In order to get a nullcline plot, we must fix two of the three gating variables. We will also fix Iapp back to 20 µA/cm2.

If we fix n and h, that leaves us with m as a function of V in the following graph:
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Likewise, if we fix m and n, we get a graph with h as a function of V:
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And n as a function of V with m and h fixed yields:
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From these graphs, it’s clear that as the sodium channels close, the potassium channels open. Hence the phase portraits
for h and n being mirror images of each other.

2.3 Solving Hodgkin-Huxley Numerically

Due to the difficulty in explicitly solving this four dimensional system (as noted above), another method must be used
to approximate the solutions of the system. One of various numerical methods to solve such a system is the Runge-Kutta
method of order. Using this method yields the following graphs:
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The top graph here shows the duration of an applied stimulus. The middle graph shows oscillations, which is the
depiction for the action potential moving along the cell membrane for the duration of the applied stimulus. The bottom
graph shows the activation and deactivation of the gating variables.
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3 FitzHugh-Nagumo Model

3.1 From Hodgkin-Huxley to FitzHugh-Nagumo

From the Hodgkin-Huxley model, we know that the cell-membrane carries potential across the inner and outer surface
of the cell. However, with the use of the voltage ion channels and currents that flow through it, shows the electrical
behavior of the cell by using a system of four differential equations. The Hodgkin-Huxley is considered to be difficult to
non- dimensionalize because of the difficulty to do the partial derivative for four equations. So, its very simple to half the
Hodgkin- Huxley into two equations. Overtime, the system of equations being use in the Hodgkin-Huxley model can be
modified into a simplified form of two differential equations. This type of system, that involve a linear nullcline for the
slow variable and an N shaped Nullcline for the fast variable that forms oscillation. This became the motivation of the
FitzHugh-Nagumo model. The FitzHugh-Nagumo consist of variable, one fast(v) and one slow(w).The fast variable has
a cubic nullcline and its called the dependent variable, and the slow variable is the recovery variable that is consistently
increasing. A parameter that plays a major role in the FitzHugh-Nagumo model is Epsilon .This parameter has been added
to more easily control the speed of one variable that is connected to the other. The FitzHugh-Nagumo doesnt need to
be biologically based to solve the model like the Hodgkin-Huxley, but simply mathematically based. Since the FitzHugh-
Nagumo model is simplified version of the Hodgkin-Huxley which models the activation and deactivation dynamics of
the cell membrane, gave way of the idea that the cell-membrane relates more to a non-linear current-voltage device or
electrical circuit with three components; a resistor, inductor, and a battery. This system was suggested by Fitzhugh and
the equivalent circuit by Nagumo himself. By using the Kirchhoffs Law, Nagumo gave us differential equations for the
behavior of the cell-membrane circuit which will be mention in this report.

3.2 Fitz-Hugh Nagumo

The Hodgkin-Huxley model can be represented in terms of two variables, one fast and one slow. The FitzHugh-Nagumo
model presents this as a simplified form with (v) being the fast variable and (w) being the slow one. The general set of
equations for the FitzHugh-Nagumo model are:

ε
dv

dt
= f(v, w) + I (36)

and

dw

dt
= g(v, w) (37)

The nullcline f(v, w) = 0 of the fast variable (v) is has a cubic shape, while the nullcline g(v, w) = 0 of the slow
variable (w) is monotonically increasing. The nullclines of both the fast and slow variables have a single intersection point
denoting the critical point. Thus, the graph of the phase plane of these nullclines is

Figure 1: This image was taken from Sneyd and Keener’s ”Mathematical Physiology”

We start by understanding cell membrane capacitance. It is a nonlinear current-voltage device. A Japanese electrical
engineer, Nagumo, built this nonlinear circuit in the 1960s using a tunnel diode.
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Figure 2: This image was taken from Sneyd and Keener’s ”Mathematical Physiology

Using the Kirchoff’s laws, the equations for the circuit diagram are:

Cm
dV

dτ
+ F (V ) + i = −I0. (38)

and

L
di

dτ
+Ri = V − V0 (39)

where I0 is the applied external current, i is the current that is traveling through the resistor-inductor into battery V0 that
give us the potential gain across the battery. The membrane potential is differentiated to the dimensional time (τ). The
reason is that time (t) is introduced as a dimensionless time variable. The function F(V) is assumed to be the ”cubic”
shape, but that is more into the electrical physics side of the model. After Electrical physicist introduce the dimensionless

variables, V
V1

, w = R1i
V1

, f(v) = −R1F (V1v)
V1

, and t = Lτ
R1

, the differential equation becomes the function of both state
variables (v, w)

ε
d(v)

d(t)
= f(v)− w − w0 (40)

d(w)

d(t)
= v − γw − v0 (41)

where, ε =
R2

1Cm

L , w0 = R1I0
V1

, v0 = V0

V1
, and γ = R

R1
. Epsilon (ε) controls the speed of the parameter of the equation and

Gamma (γ) is the slope of the equation.

The two sets of equations that we used to give the Fitzhugh-Naguno models are

A =


0.01

dv

dt
= v(v − 0.1)(1− v)− w + I

dw

dt
= v − 0.5w

(42) B =


0.01

dv

dt
= v(v + 0.1)(1− v)− w + I

dw

dt
= v − 0.5w

(43)
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Solving these sets of equations will yield the following graphs:

Figure 3: Graph of A Figure 4: Graph of B

The fast variable, v, is shown in blue and the slow variable, w, is shown in green. Notice that the graph of A only
has one spike while the graph of B spontaneous oscillates. The only difference between the sets of equations (7) and (8)
is the sign on (v ± 0.1). There was no external current applied to either equation (I = 0). In order for A to oscillate like
B, a contant external current needs to be applied. This will be shown later. This is very important. With no external
current applied, the graph should spike and then die out. This tells us that the (+) instead of the (−) sign is critical. The
set of equations in B would not be ideal to use because it does not model natural behavior. With no applied stimulus,
there should not be spontaneous oscillations.

Below are the phase planes for each of the two graphs:

Figure 5: Phase portrait of A Figure 6: Phase portrait of B

For A, the nullcline for v is w = −v3 + 1 + 1.1V 2 − 0.1v which is shown in blue and the nullcline for w is g(v) = 2v
and is shown in green. For |boldcymbolB, the nullcline for v is w = −v3 + 1 + 0.9V 2− 0.1v which is shown in blue and the
nullcline for w is g(v) = 2v and is shown in green.Notice that each of the graphs are identical with Sneyd and Keener’s
illustration of the phase plane (Figure 1). Just as the graph of A only had one peak before it died out, the phase plane
of A starts at the initial condition and only does one orbit. The graph of B oscillates and likewise, the phase plane has
continuous orbit.
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The nullclines intersect at (0,0), which is the only critical point. In order to see the stability of the critical point, we
computed the Jacobian at (0,0).

J(0,0) =


∂(f)

∂(v)
(0, 0)

∂(f)

∂(w)
(0, 0)

∂(g)

∂(v)
(0, 0)

∂(g)

∂(w)
(0, 0)

 =

 −3(0)2 + 2.2(0)− 0.1 −1

1 −0.5

 =

 −0.1 −1

1 −0.5



The eigenvalues for this matrix are λ = 0.3+0.9798i and λ = 0.3−0.9798i. This means that the critical point is stable
and spiral.

Next we want to see the changes of behavior in our functions when one parameter changes. Thus, we do a bifurcation
analysis testing different values of I, γ, and ε. The general form of the studied FHN model is

A =

 f(v, w) =
1

ε
v(v − α)(1− v)− w + I

g(v, w) = v − γw
(44)

The original values of I, γ, and ε were I = 0, γ = 0.5, and ε = 0.01. The following graphs show the variations in the
oscillations for different parameter values.
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Adding constant current gives the following changes to the graph of A:

Figure 7: I = 0 −→ One spike, no oscillations Figure 8: I = 0.1 −→ Oscillations die out, not enough stimuli

Figure 9: I = 1 −→ Constant oscillations Figure 10: I = 10,−→ Too much applied current

Studying these parameter values tells us that the constant applied current, I, is 0.11 < I < 1.2.
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With a constant applied current of I = 1, changing values of γ gives the following changes to the graph of A:

Figure 11: γ = 0.05 −→ Oscillations die out Figure 12: γ = 0.5 −→ Constant oscillations

Figure 13: γ = 0.7 −→ Model does not work

Studying these parameter values tells us that the values of γ need to be 0.05 < γ < 0.6.
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With a constant applied current of I = 1 and γ = 0.5, changing values of ε gives the following changes to the graph ofA:

Figure 14: ε = 0.01 −→ Continuous oscillations Figure 15: ε = 0.1 −→ Oscillations die out

Figure 16: ε = 0.0001 −→ Continuous oscillations

Studying these parameter values tells us that the values of ε need to be ε < 0.1.
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3.3 Modified FitzHugh-Nagumo Model

The FitzHugh-Nagumo general model has two equations whose nullclines display a cubic shape function and a mono-
tonically increasing function. The new cubic shape function, f(v, w), that we derived with the previous increasing function,
g(v, w), is:

A =

 f(v, w) =
1

ε
sin(v)− w + I

g(v, w) = v − γw
(45)

The model behaves the same way as the original FHN model and exhibits the same phase plane.

Figure 17: Original FHN Phase Plane

Figure 18: Modified FHN Model Graph Figure 19: Modified FHN Model Phase Plane

The function, f(v, w), has parameter values of ε = 0.01, an applied stimulus of I = 1, and γ = 0.5. Though the
function does not fit a biological model because it oscillates even without applied stimulus, it still has the same behavior
as the original FHN model.

The nullclines intersect at (0,0), which is the only critical point. In order to see the stability of the critical point, we
computed the Jacobian at (0,0).
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J(0,0) =


∂(f)

∂(v)
(0, 0)

∂(f)

∂(w)
(0, 0)

∂(g)

∂(v)
(0, 0)

∂(g)

∂(w)
(0, 0)

 =

 0.8cos(0) −1

1 −0.5

 =

 0.8 −1

1 −0.5



The eigenvalues for this matrix are λ = 0.15 + 0.759934i and λ = 0.15− 0.759934i. This means that the critical point
is stable and spiral. The behavior of the critical point is identical with the behavior of the critical point in the original
FHN model.
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4 Morris-Lecar Model

4.1 History of the Morris-Lecar Model

In 1981, Charles Morris and Harold Lecar proposed their eponymous equation as an reduced excitation model in
the vein of the Hogdkin-Huxley equations, which constitutes an exact description of the conductance-based model for
the giant squid neuron. In particular, they begin with an ”already reduced” system of equations taken from the voltage
clamp studies of Keynes, which proposes that the relevant state variables for the barnacle muscle are, along with the
membrane potential, the proportion of voltage dependent Ca+ and K+ ion channels open at a given time(in which, the
Na+ conduction plays no significant role in dynamics). The Morris-Lecar Model is a two-dimensional ”reduced” excitation
model applicable to systems having two non-inactivating voltage-sensitive conductance. The original form of the model
employed an instantaneously responding voltage-sensitive Ca+ conductance for excitation and a delay voltage-dependent
K+ conductance for recovery. The biological system studied was the Purkinje fibers through its membrane potential and
the concentrations which had an effect on it. This model used a simplified version of the Hodgkin-Huxley model. A
reduced system of equations was created that produce the same results for most cases. In order to approximate the muscle
reactions appropriately, the models are based off of one you would use to follow an equivalent circuit design.

4.2 Morris-Lecar

Using the Morris-Lecar Model, techniques employed are known as current and space clamping, which essentially
eliminated spatial variations the traveling action potential and fixed the current across the membrane to set parameter
which the experimenter could control. Then in order to reduce the model, they submerged the barnacle muscle in
various solutions in order to eliminate either Ca+ and Na+ conductance, or in the case of the Morris-Lecar equation,
simultaneously optimize them. By doing this, they reduced the dynamics of the system to two state variables (depending
on which solution the barnacle is submersed in), which considerably simplifies possible behavior the system can exhibit
due to special topological properties of the phase plane that is not enjoy by higher dimensional Euclidean space (namely
that a simple closed curve divides the plane into two distinct connected components.

4.2.1 Principle Assumptions

Generally, excitable systems have more than two relevant excitation variables, because there are often more than
two species of gated channels and also because some channels have autonomous inactivation processes. Thus the pri-
mary assumption in using a two-dimensional model is that the true higher-order system can in fact be projected onto a
two-dimensional phase space without altering the topological properties of the phase profile. This is true for the four-
dimensional Hodgkin-Huxley system, which has a single singular point and exhibits excitation phenomena that can all
be duplicated in two dimensions. There are other neural excitation phenomena such as bursting oscillations or chaotic
firing which are intrinsically higher-dimensional, and cannot be duplicated in the phase plane. The principal assumptions
underlying the Morris-Lecar model include:

• Equations apply to a spatially iso-potential patch of membrane.

• There are two persistent (non-inactivating) voltage-gated currents with oppositively biased reversal potentials. The
depolarizing current is carried by Na+ or Ca2+ ions (or both), depending on the system to be modeled, and the
hyperpolarizing current is carried by K+.

• Activation gates follow changes in membrane potential sufficiently rapidly that the activating conductance can
instantaneously relax to its steady-state value at any voltage.
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• The dynamics of the recovery variable can be approximated by a first-order linear differential equation for the
probability of channel opening. This assumption is never exactly true, since channel proteins are composed of
subunits, which must act in concert, to reach the open state. Despite missing delays in the onset of recovery, the
model appears to be adequate for phase-plane considerations for many excitable systems.

4.2.2 Variables and Parameter of Morris-Lecar Model

Listed below are the dimensional parameters and variables for the Morris-Lecar Model:

• V - Membrane Potential (mV )

• W - Recovery Variable (mV )

• Iapp - Applied Current Stimulus( µAcm2 )

• T - Time (ms)

• Cm - Membrane Capacitance( µFcm2 )

• g - Instantaneous(or maximum) Membrane Conductance(mmhocm2 )

• VCa, VK , VL - equilibrium potential corresponding to leak, Ca++, and K+ conductances, respectively (mV )

• v1 - potential (mV )

• v2 - reciprocal of slope of voltage dependence (mV )

• v3 - potential (mV )

• v4 - reciprocal of slope of voltage dependence (mV )

• K - Potassium

• Ca - Calcium

• L - Leakage

4.2.3 Morris-Lecar Model

Using the variables from the previous section, Morris and Lecar was able to derive the equations of the model:

Cm
dV

dt
= −gCaM∞(V )(V − VCa)− gKW (V − Vk)− gL(V − VL) + Iapp (46)

dW

dt
=
W∞(V )−W
TW (V )

(47)

4.3 Solving the Morris-Lecar Model

To solve the Morris-Lecar Model, we wrote our own code in MatLab. We started by inputting the given dimensional
values, listed before. Next, we assigned those given dimensional values to the non-dimensional parameters.

4.3.1 Non-dimensional Variables and Parameters

In this project, the first task was to find a non-dimensional representation of the Morris-Lecar equations in terms of
variables:

• v = V
VCa

• t = gKT
2Cm

• w = W
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To go along with these given variables, we realized that we assign the following parameters to find the non-dimensional
representation:

V1 = VCa

v2
V2 = v1

v2
V3 = vCa

v4
V4 = v3

v4
V5 = vK

vCa
V6 = vL

v(Ca)

a = gCa

gK
b = 2∗gL

gK c = 2
gK∗vCa

d = θ∗gK
2∗Cm

Also, we needed to substitute in non-dimensional functions a list of the non-dimensional functions used in the non-
dimensional equations:

• M∞ = 1
21 + tanh(V1V − V2)

• W∞ = 1 + tanh(V3V−V4

2 )

• l = cosh(V3V−V4

2 )

After we reassigned the values of the original model, so that we could work with the non-dimensional equations, those
equations are as such:

dv

dt
= −aM∞(V )(V − 1)− 2w(V − V5)− b(V − V6) + cIapp (48)

dw

dt
= W∞ (49)

4.3.2 Non-dimensional Form of ML Model

After we reassigned the values of the original model, so that we could work with the non-dimensional equations, those
equations are as such:

dv

dt
= −aM∞(V )(V − 1)− 2w(V − V5)− b(V − V6) + cIapp (50)

dw

dt
= W∞ (51)

4.4 Phase Portrait

Shown in the graph below, the resulting V-nullcline, W-nullcline, and the trajectory.

4.4.1 Jacobian and Eigenvalues

The character of each singular point is determined by the roots of the characteristic equation for the eigenvalues of
the equations linearized in the neighborhood of the singular point. These roots in turn are determined by a discriminant
involving the elements of the Jacobian matrix evaluated at that point. These roots are determined by the slopes and angles
of intersection of the two nullclines at the singular point. Because of the non-linear characteristics of both nullclines, there
are a number of different geometric possibilities for the intersections, and hence a surprising number of singular-point
patterns. Thus the singular points can be stable or unstable, nodes or foci as determined by changes in the roots of the
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characteristic equation that are sensitive to modest changes in the conductance parameters. For this research project,
equations (5) and (6) were used to calculate Jacobian matrix that is stated below:

[
−a 1

M2 (V1) + 2w + β −2v
a sinh(0.5(V3v − V4))(0.5V3)[W − w] + cosh(0.5(V3v − V4))[V3

W ] −a cosh(0.5(V3v − V4))

]
Once we derived this Jacobian matrix, the use of the critical points, (0.0333, 0.553) found using the function psolve
in MatLab, gives a the following Jacobian matrix:[
-4.987 −0.0666
2.6871 −0.5508

]
The resulting eigenvalues of the Jacobian matrix are −4.9463 and −0.5915. There is a theorem that states:

An equilibrium point x of the differential equation 1 is stable if all the eigenvalues of J, the Jacobian evaluated at x, have
negative real parts. The equilibrium point is unstable if at least one of the eigenvalues has a positive real part.

Because the eigenvalues of the Jacobian are both negative and real numbers, one can conclude that the Jacobian is stable.

4.5 Solutions

Using the new non-dimenstional equations, MATLAB can then be used to analyze the new model numerically and
provide the following graph:

• This graph is important because it portrays the oscillatory behavior that model represents.

4.5.1 Bifurcation Analysis

Bifurcation theory is concerned with how solutions change as parameters in a model are varied. After a bifurcation
analysis, Iapp is discovered to be an important variable in the equation because of the outcome of the graphs that it
produces. Numerically solving for the boundaries of Iapp, it was discovered that the lower boundary of Iapp was 95.75
mA/cm2 because this was the lowest amount of current that could be applied that would cause oscillatory behavior. The
upper boundary was calculated to be 192.5 mA/cm2 because this was the highest amount of current that could be applied
that would overload the model, thus getting rid of the oscillatory behavior.
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5 Conclusion

The Hodgkin-Huxley model is entirely biologically driven and therefor the most detailed of the the three models.
However, because of its complexity (being a system of four differential equations) it is very difficult to solve. The
FitzHugh-Nagumo model greatly simplifies the procedure to find a solution. It being completely mathematically driven
however, means that not all of its parameters can be explained biologically. The Morris-Lecar model combines the relative
simplicity of the FitzHugh-Nagumo Model with the biological detail of the Hodgkin-Huxley model.
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