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Action Potential

Why study nerve action potentials?
Action potential describes how the body communicates and sends signals.
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http://highered.mcgraw-hill.com/sites/0072943696/student_
view0/chapter8/animation__action_potential_propagation_
in_an_unmyelinated_axon__quiz_2_.html
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Nerve Impulse Transmission Models

Hodgkin Huxley model (1952)

Fitz-Hugh Nagumo model (1961)

Morris-Lecar model (1981)
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History of the Hodgkin-Huxley Model

Our present day understanding and methods of modeling neural excitability have
been significantly influenced by the landmark work of Hodgkin and Huxley. In 1952,
Hodgkin and Huxley published a series of articles, defining their research.
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Derivation of the Hodgkin-Huxley Model

The Hodgkin-Huxley model is based on the idea that the electrical properties of
a segment of a cell membrane can be modeled by an equivalent circuit.

Figure: The equivalent circuit to a segment of the cell membrane
Image from http://thephysicsdomain.com/2013/03/28/047-hodgkin-huxley-hysteria/
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Derivation of Hodgkin-Huxley

Beginning with the basic physical principle of Capacitance: C = Q(r,t)
V (r,t) , where:

C is capacitance
r = r(x ,y ,z) is the spatial coordinates vector
Q(r, t) is electrical charge as a function of space and time
V (r, t) is electric potential (or voltage) as a function of space and time

Differentiating both sides with respect to time and solving for current gives us:
C ∂V

∂ t = ∂Q
∂ t = I(V , r, t)

Where: I(V , r, t) is capacitave electric current as function of voltage, space, and
time
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For a cell membrane, conservation laws dictate that the capacitive current
would be defined as: ∂Q

∂ t = Cm
∂V
∂ t = I(V , r, t) = −∇ ·J(r) + Iion(V , t), where:

Cm is the membrane capacitance
Iion(V , t) is the ionic cell membrane current
J(r) is the spatially dependent membrane current vector

Further, if we assume space clamps are applied at specific points along the
membrane making the voltage uniform across the system, we can ignore all
space dependence: ∇ ·J(r) = 0

The system at rest is then: Cm
dV (t)

dt = Iion(V , t)
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Now consider the movement of an ion A across the membrane, moving
transverse to Iion(V , t). This transverse potential drop across the membrane
has two components:

The first is due to the concentration differences caused by this movement and is
given by the Nernst Potential: VA = RT

zF ln [A]e
[A]i

, where:

[A]e is the external concentration of ion A
[A]i is the internal concentration of ion A
R is the universal gas constant
T is absolute temperature
F is Faraday’s constant
z is the charge of ion A

The second is due to a transverse electrical current: Vτ = Iτ
g , where:

g is membrane conductance
Iτ is transverse current

Put together, the potential drop across the membrane is: V = VA + Vτ = VA + Iτ
g
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Solving for transverse current: Iτ = g(V −VA)

For multiple types of ion transfer with some leakage, the transverse current
becomes: Iτ = ∑

j
gj (V −Vj ), where j denotes each ion type as well as any ion

leakage.
Because Kirchoff’s Current Law states that the sum of all currents in a closed
system equals zero, we can deduce that:

Iion + Iτ = 0
Iion = −Iτ = −∑

j
gj (V −Vj )

Upon stimulation of the system, an external current (Iapp) is applied:
Iion = −∑

j
gj (V −Vj ) + Iapp

Putting it all together yields: Cm
dV (t)

dt = −∑
j

gj (V −Vj ) + Iapp

Note: Iapp could either be constant or a function of time.
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For Sodium and Potassium Ion Channels

For a system with sodium (Na) and potassium (K) ions passing across the cell
membrane (with some ion leakage L), the equation for the time rate change of
voltage is: Cm

dV (t)
dt = − ¯gNa(V −VNa)− ḡK (V −VK )−gL(V −VL) + Iapp.

The leakage conductance gL is an experimentally determined constant. If the
sodium conductance ( ¯gNa) and the potassium conductance (ḡK ) are held
constant, the model breaks down.
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Instead, Hodgkin and Huxley used gating variables to treat ¯gNa and ḡK as
functions of voltage and time:

¯gNa = ¯gNa(V , t)
¯gNa = ¯gNa(V , t)

The gating variables chosen were:
m(t): sodium gate activation
h(t): sodium gate deactivation
n(t): potassium gate activation

These gating variables are functions of time and related to ¯gNa and ḡK by the
equations:

∂ ḡK
∂ t = gK n4

∂ ¯gNa
∂ t = gNam3h

The sodium ion channel has 3 steps to open and one step to close, hence m3h.

The potassium ion channel has 4 steps to open and remains open, hence n4.

Action Potential Models Chelsi Pinkett, Jackie Chism, Kenneth Anderson, Paul Klockenkemper, Christopher Smith, Quarail Hale 13 / 48



These gating variables satisfy the following differential equations:

dm(t)
dt

= αm(V )(1−m)−βm(V )m (1)

dh(t)
dt

= αh(V )(1−h)−βh(V )h (2)

dn(t)
dt

= αn(V )(1−n)−βn(V )n, (3)

Where:

αm(V ) =
(0.1)(25−V )

e( 25−V
10 )−1

βm(V ) = 4e
−V
18

αh(V ) = (0.07)e
−V
20

βh(V ) =
1

e( 30−V
10 ) + 1

αn(V ) =
(0.01)(10−V )

e( 10−V
10 )−1

βn(V ) = (0.125)e
−V
80
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Final Hodgkin-Huxley Model

Cm
dV (t)

dt
= − ¯gNa(V −VNa)− ḡK (V −VK )−gL(V −VL) + Iapp

dm(t)
dt

= αm(V )(1−m)−βm(V )m

dh(t)
dt

= αh(V )(1−h)−βh(V )h

dn(t)
dt

= αn(V )(1−n)−βn(V )n
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Parameters and Initial Values

Conductance Constants:

gK = 36µS/cm2

gNa = 120µS/cm2

gL = 0.3µS/cm2

Ion Voltage Constants:

VNa = 115mV

VK = −12mV

VL = 10.6mV

Membrane Capacitance
Constant:

Cm = 1.0µF/cm2

Initial Values:

V (0) = −70mV

m(0) = 0

h(0) = 0

n(0) = 0
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Hodgkin-Huxley Model

Once one has begun to research the Hodgkin-Huxley model, more in-depth, one can
find that the instantaneous I −V curves of Na+ and K + are approximately linear. In
this case, equation (1) becomes

Cm
dv
dt

= −gK n4(v − vK )−gNam3h(v − vNa)−gL(v − vL) + Iapp (4)
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Functions

Derivatives with respect to t :
dm
dt = αm(v)(1−m)−βm(v)m
dn
dt = αn(v)(1−n)−βn(v)n
dh
dt = αh(v)(1−h)−βh(v)h
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Functions

Equations of α(v) and β (v)

αm(v) = 0.1 25−v

e
25−v

10
−1

βm(v) = 4e
−v
18

αn(v) = 0.01 10−v

e
10−v

10 −1

βn(v) = 0.125e
−v
80

αh(v) = 0.07e
−v
20

βh(v) = 1

e
30−v

10 +1
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Variables

A list of the variables used in the model includes:

Cm - Capacitance of the cell membrane

g - Membrane conductance

v - Voltage

Iapp - Applied current

K - Potassium

Na - Sodium

Some initial values that we use include:

gK = 36

gNa = 120

gL = 0.3

vNa = 115

vK = −12

Iapp = 10.6
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Analysis of Hodgkin-Huxley Model
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Analysis of Hodgkin-Huxley Model
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Analysis of Hodgkin-Huxley Model
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Analysis of Hodgkin-Huxley Model
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General FHN Model

ε
dv
dt

= f (v ,w) + I

and

dw
dt

= g(v ,w)
Figure : This image was taken from
Sneyd and Keener’s "Mathematical
Physiology"
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FHN Circuit

In 1960, Nagumo built a circuit having the same components as cell membrane
using an inductor, resistor, and a battery.
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Circuit Equations

Using Kirchoff’s laws, the membrane circuit diagram can be modeled as:

Cm
dV
dτ

+ F(V ) + i = −Io (5)

L
di
dτ

+ Ri = V −Vo (6)

Io= Applied external current

i= Current through the resistor, inductor, and battery

V= Membrane potential

V0= Potential gain across the battery
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Equations used to model FHN

A =


0.01

dv
dt

= v(v −0.1)(1− v)−w + I
dw
dt

= v −0.5w

B =


0.01

dv
dt

= v(v + 0.1)(1− v)−w + I
dw
dt

= v −0.5w
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Graphic Solutions

Figure : Graph of A Figure : Graph of B

A has only spike and B has spontaneous oscillation

No applied current
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Phase Portrait of Nullclines with the Orbit

A =

{
w = −v3 + 1.1v2 −0.1v

w = v
0.5

Figure : Phase portrait of A

B =

{
w = −v3 + 0.9v2 + 0.1v

w = v
0.5

Figure : Phase portrait of B
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Critical Points

J(0,0) =

 −0.1 −1

1 −0.5


The nullclines intersect at (0,0), which is the only critical point.

In order to see the stability of the critical point, we computed the Jacobian at
(0,0).

The eigenvalues for this matrix are λ = −0.3 + 0.9798i and
λ = −0.3−0.9798i .

This means that the critical point is stable and spiral.
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Bifurcation Analysis

A =


f (v ,w) =

1
ε

v(v −α)(1− v)−w + I

g(v ,w) = v − γw
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Bifurcation Analysis

0.11 < I < 1.2
I = 0

I = 1

I = 0.1

I = 1

Action Potential Models Chelsi Pinkett, Jackie Chism, Kenneth Anderson, Paul Klockenkemper, Christopher Smith, Quarail Hale 33 / 48



Bifurcation Analysis

0.05 < γ < 0.6

With a constant applied current
of I = 1, changing values of γ

gives the following changes to
the graph of A:

γ = 0.05

γ = 0.5

γ = 0.7
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Bifurcation Analysis

ε < 0.1

With a constant applied current
of I = 1 and constant γ = 0.5,
changing values of ε gives the
following changes to the graph of
A.

ε = 0.01

ε = 0.0001

ε = 0.1
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Modified FHN Model

A =

 f (v ,w) =
1
ε

sin(v)−w + I

g(v ,w) = v − γw

Figure : Modified FHN Model
Graph

J(0,0) =

 0.8 −1

1 −0.5


λ1,2 = 0.15±0.759934i

Figure : Modified FHN Model
Phase Plane
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The Morris-Lecar Model

Introduced in 1981 by Dr. Harold Lecar and Dr. Catherine Morris
The Morris-Lecar model is a biological neuron model used to reproduce the
variety of oscillatory behaviors between the Calcium and Potassium ions in the
barnacle giant muscle fiber.
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Principle Assumptions

The principal assumptions underlying the Morris-Lecar model include:
Conductance-based model, where all of the ion channels are activated by
voltage.

In excitable systems, there are two different types of gated ion channels for one
species of ions in the membrane.
The open and closed states of the channels are partitioned according to a
Boltzman distribution.
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Variables and Parameters

V - Membrane Potential (mV )

W - Recovery Variable (mV )

Iapp - Applied Current Stimulus( µA
cm2 )

T - Time (ms)

Cm - Membrane Capacitance( µF
cm2 )

g - Instantaneous(or maximum) Membrane Conductance( mmho
cm2 )

VCa,VK ,VL - Equilibrium potential corresponding to leak, Ca2+, and K +,
respectively (mV )

v1 - Potential (mV )

v2 - Reciprocal of slope of voltage dependence (mV )

v3 - Potential (mV )

v4 - Reciprocal of slope of voltage dependence (mV )

gK - Conductance of Potassium Ions (mS)

gCa - Conductance of Calcium Ions (mS)

gL - Conductance of Leaked Ions (mS)
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The Model

The Morris-Lecar model is written as

Cm
dV
dt

= −gCaM∞(V )(V −VCa)−gK W (V −Vk )−gL(V −VL) + Iapp (7)

dW
dt

=
W∞(V )−W

TW (V )
(8)

Where M∞ , N∞ and TW are represented as

M∞(V ) =
1
2

(1 + tanh(
V −V1

V2
)) (9)

W∞(V ) =
1
2

(1 + tanh(
V −V3

V4
)) (10)

TW = cosh
V −V3

2V4
(11)
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Non-Dimensionalization

The first task was to find a non-dimensional representation of the Morris-Lecar
equations in terms of these scaling variables.

v = V
VCa

t = gK T
2Cm

w = W

The non-dimensional parameters are:

V1 = VCa
V2

,V2 = V1
V2
,V3 = VCa

V4
,V4 = V3

V4
,V5 = VK

VCa
,V6 = VL

VCa

a = gCa
gK

,b = 2gL
gK ,c = 2

gK ∗vCa
,d = θ∗gK

2Cm
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Non-dimensional Equations

The reassigned values of the original model using the non-dimensional functions
gives a new model to analyze:

dv
dt

= −a(1 + tanh(V1v −V2))−2w(v −V5)−b(v −V6) + cIapp (12)

dw
dt

= acosh(
1
2

(V3v −V4))[
1
2

(1 + tanh(V3v −V4))−w ] (13)

This analysis is performed with the following initial values:

gCa = 4.4 mS
cm2 ,gK = 8 mS

cm2 ,gL = 2 mS
cm2

V1 = −1mV ,V2 = 15mV ,V3 = 0mV ,V4 = −40mV

VCa = 100mV ,VK = −70mV ,VL = −50mV

Cm = 20 µF
cm2 , Iapp = 0.06 mA

cm2 ,θ = 0.040(ms)−1

Action Potential Models Chelsi Pinkett, Jackie Chism, Kenneth Anderson, Paul Klockenkemper, Christopher Smith, Quarail Hale 42 / 48



Solutions

With the new non-dimenstional equations, MATLAB can then be used to analyze the
new model numerically and provide the following graph

This graph is important because it portrays the oscillatory behavior that model
represents.
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Solutions Cont’d

Figure : Lower boundary of Iapp Figure : Upper boundary of Iapp
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Phase Portrait Analysis
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Jacobian and Eigenvalues

Using MATLAB commands, the critical points of the phase portrait analysis were
found out to be (.0333, .5553). After calculating the Jacobian matrix at the critical
point for our model, this is the resulting matrix:[

−4.987 −0.0666
2.6871 −0.5508

]
Because of the form of this matrix, this system of equations is deemed stable and
from this matrix the Eigenvalues are:

λ1 = −4.9463 (14)

λ2 = −0.5915 (15)
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Conclusion

In conclusion,

The Hodgkin-Huxley model is very accurate, but hard to analyze.

The FitzHugh-Nagumo model is mathematically correct, but hard to explain
biologically.

The Morris-Lecar model combines the simplicity of the FitzHugh-Nagumo
model, while maintaining some biological meaning.
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