Project 1 Parallel Computation on Distributed Memory with PVM
A. Introduction to PVM (Parallel Virtual Machine)
1. Parallel Processing

In parallel processing, a number of computers is used to solve one problem. When using p computers the ideal speed-up rate is
[image: image1.wmf]p

T

T

p

s

=

. If there is the communication among the computers, the rate p may not be achieved.

[image: image14.wmf]i

x

2. An Example -- Numerical Integral

Integral
[image: image2.wmf]ò

=

t

s

dx

x

f

I

)

(

 can be calculated approximately by I=
[image: image3.wmf])

(

1

0

å

-

=

×

N

i

i

x

f

h

,

 where
[image: image4.wmf]N

s

t

h

-

=

 and
[image: image5.wmf])

1

0

(

)

5

.

0

(

-

£

£

+

+

=

N

i

h

i

s

x

i

 (Fig. 1). In this
 approximate calculation, the larger the N is the more accurate the I is.
 The ratio of the circumference
[image: image6.wmf]dx

x

ò

-

=

1

0

2

1

4

p

 can be calculated
 approximately by
[image: image7.wmf]å

-

=

-

×

=

1

0

2

1

4

N

i

i

x

h

p

, where
[image: image8.wmf]N

h

1

=

 and

[image: image9.wmf])

1

0

(

)

5

.

0

(

-

£

£

+

=

N

i

h

i

x

i

.
3. PVM System
PVM (Parallel Virtual Machine) is a software system which use a number of computers on network to be a virtual parallel computer. In PVM system task is the smallest unit (similar to process in Unix). Starting or terminating a task and the communication between tasks are supported by PVM functions. Each task has its own ID which is assigned by PVM system, and communication between tasks is held according to the IDs of tasks. Tasks are assigned to host computers by PVM system automatically.
Usually (not always), a PVM program consists of a master program and a slave program. PVM system starts the master program which is executed by a master task on one host computer, and the master task starts the slave program which is executed in parallel by a number slave tasks on a number of host computers (fig. 2). If the number of host computers is smaller than the number of tasks, more than one task has to assign to one host computer. In this case, the effect of parallel processing will be reduced. To start tasks PVM function pvm_spawn is used and the ID of the started tasks are given. For example,
 pvm_spawn(“pi_slave”,(char **)0,0,” ”,2,ctid);

 (Supposing that int ctid[2]; has been declared.)

[image: image15.wmf])

(

i

x

f

starts slave program pi_slave for two slave tasks, and the IDs of two tasks are turn back to array ctid. Furthermore, the function pvm_spawn turns back the number of started tasks.

To send data to slave tasks the master task uses the following three steps (Fig. 3). First, the master task uses function pvm_initsent(0) to initiate the sending buffer. Then, it uses functions pvm_pkint (if it sends integer data) or pvm_pkdouble (if it sends double precise real number) to put the data in the sending buffer. For example,
 pvm_pkint(&n,1,1); (Supposing that int n; has been declared.)

takes the value of n to the sending buffer. Finally, function pvm_send sends the content of the sending buffer to slave tasks. For example, pvm_send(ctid[0],1) sends the data to the first slave task.
To get data from the master task a slave task use the following two steps. First it uses function pvm_parent() to get the ID of the master task. For example,

 ptid=pvm_parent(); (Supposing that tint ptid; has been declared.)

takes the ID of the master task into variable ptid. Then it uses pvm_recv to take the data sent from the master task into its receiving buffer. For example,

 pvm_upkint(&n,1); (Supposing that int n; has been declared.)
takes the value of n into the receiving buffer. Using the above steps, the value of n in the master task is copped to the value of n in the slave tasks.

Finally, function pvm_exit() is used to terminate tasks.

4. Running PVM Programs

4.1 Compiling

Let two programs pi_dual.c and pi_slave.c be the master program and the slave program, respectively, used for calculating the value of
[image: image10.wmf]p

. Using command ccpvm to compile them as follows: ccpvm pi_dual pi_slave . After compiling, there are two executable files pi_dual and pi_slave.
4.2 Running PVN Programs on pvm Console

First start PVM system from console as follows.

 %pvm

 pvm>

The second line is the prompt; users can input commands there to control PVM system and do work such as adding/deleting host computers into PVM system and running PVM programs. To add host computers into PVM system, command add is used as follows.

 Pvm> add solaris london

 2 successful

 HOST DTID
 solaris 80000

 london c0000

Similarly, command delete can be used to delete host computers from PVM system. Command conf is used to show the configuration of the current PVM system.
 pvm> conf

 3 hosts, 1 data format

 HOST DTID ARCH SPEED

 venice 40000 SUN4SOL2 1000

 solaris 80000 SUN4SOL2 1000

 london c0000 SUN4SOL2 1000

The above lines show that 3 host computer is used in the current PVM system. Command spawn is used to run PVM programs. For example, to run compiled program pi_dual command spawn is used as follows.
 pvm> spawn -> pi_dual 200000000

 [2] 1 successful

 tc0001

The number 100000 is the parameter of pi_dual. The above lines show that pi_dual has been started successfully, where c0001 is the ID of pi_dual task. The list of the running tasks can be shown by command pc as follows.

 pvm> ps –a

 HOST TID FLAG 0x COMMAND

 venice 40004 6/c,f 1000

 solaris 80003 6/c,f 1000

 london c0003 6/c,f 1000

The above lines show the running tasks, one pi_dual task and two pi_slave tasks, and their task IDs. When the running finished, the following lines come out.

 pvm> [3:tc0003] EOF

 [3:t40004] Interval=200000000, PI=3.141592653600589480
 [3:t40004] EOF

 [3:t80003] EOF

 [3] finished

Command kill is used to suspend a running task. Command help is used to investigate commands. The following is an example.

 pvm> help kill

 kill – Terminate tasks

 Syntax: kill [opertions] tid …

 Opertins: -c kill children of tid

Command help without parameter gives the list of PVM commands. Command halt is used to finish the running of PVM system.

 pvm> halt

 %

Before logout of host computers, command pvmhalt has to be used to finish all pvm processes as follows.

 % pvmhalt

4.3 Running PVN Programs by Visual Tool xpvm

xpvm is a visual tool for running PVM system. It shows the communication betweens tasks and the tracing of each task. After xpvm is started as follows.

 %xpvm

xpvm window will appear. The upper half part of the window shows the host computers and the lower half part shows the tracing of tasks. On the top of the window, there is a number of control buttons.
 Hosts is used to add host computers.

 Tasks is used to run the PVM program (e.g., inputting pi_dual 200000000 to the command line).

 Views is used to get various information.

 Halt is used to terminate xpvm.
 Help is used to help youself.

From the running tracing graph the information at any moment can be obtained. (1) Long bars represent tasks. By clicking any part of the bars the information for that moment will appear. By clicking the middle or right buttons of the mouse the bars can be expended and reduced. (2) The lines crossing the bars represent the communication among the tasks. By clicking any part of the lines the information for that moment will appear.
B. Project Basics
(1) Read the program pi_dual.c and pi_slave.c which are used for calculating
[image: image11.wmf]p

. Compile pi_dual.c and pi_slave.c. Learn to use xpvm.

(2) Revise program pi_dual.c to pi_single.c such that it uses only one pi_slave task. Find N (the number of the divided intervals) such that the running time of pi_single is 30 sec, 60 sec, 90 sec, and 120 sec, respectively.

(3) Compare the running time of pi_dual and pi_single using the different values of N obtained in (2). Notice that the ideal speed-up rate is
[image: image12.wmf].

2

pi_dual

of

 time

running

pi_single

of

 time

running

=

(4) Revise program pi_dual.c to pi_multi.c such that it can use any number of slave tasks.

For example,
 Pvm> spawn -> pi_multi 200000000 4

starts 4 slave tasks which do calculation in intervals [0,0.25],[0.25,0.5],[0.5,0.75],[0.75,1], respectively, where each interval is divided to 50000000 smaller intervals.

(5) For each value of N obtained in (2), get the running time pi_multi when the number of slave

tasks is 1,2,4,8,16, respectively, find the speed-up rate (notice that the ideal rate is

[image: image13.wmf])

 tasks

slave

p

using

of

 time

running

 task

slave

one

using

of

 time

running

p

=

, investigate the change in the speed-up rates, and discuss the reasons.

C. Advanced Subjects
Select at least one subject from the following subjects.
(1) Design the PVM programs for other problems such as Prime Factorization, Matrix Multiplication, Sorting, or any problem in your research field. Discuss the running time and speed-up rate of your program.

(2) Consider how to balance the work load among the host computers. (Hint: according to the work load of each computer, the time needed for running pi_slave is different. Assign more slave tasks to the computers which has lower work load. Design the PVM program to realize your idea, and discuss how much the running time and the speed-up rate are improved.

(3) Compare and discuss PVM system with other parallel computers based on numerical integral (about 3 pages).
References

· Al Geist et al., PVM: Parallel Virtual Machine, The MIT Press

 (http://www.netlib.org/pvm3/book/pvm-book.html)

Appendix

(1) Master program pi_dual.c for calculating the ratio of the circumference

/* Calculating PI by integral (Mater Program) */

#include <stdio.h> /* For standard I/O functions¡Êprintf¤Ê¤É¡Ë*/

#include "pvm3.h" /* For stand pvm functions */

/* */

main(argc,argv)

int argc;

char **argv;

{

 int intervals; /* Number of intervals */

 int ctid[2]; /* task id (subtasks) */

 int n; /* Number of intervals for one subtask */

 double s,t; /* Interval of tasks */

 double result1,result2; /* Results of subtasks */

/* */

 if(argc<=1){ /* Finish if no any parameter */

 printf("Usage:pi_dual intervals\n");

 pvm_exit();

 exit(0);

 }

/* */

 sscanf(argv[1],"%d",&intervals);

 /* Get the first parameter and put it into intervals */

 if(pvm_spawn("pi_slave",(char **)0,0,"",2,ctid)!=2){

 /* Start two subtasks for executing slave program pi_slave¡£

 Save the subtask ids into arry ctid */

 printf("can't start pi_slave\n"); /* Fail in starting the subtasks */

 pvm_exit();

 exit(0);

 }

/* */

 n=intervals/2; /* Interval for one subtask */

 s=0;t=0.5; /* First subtask responsible for interval [0,0.5] */

 pvm_initsend(0); /* Prepare for data sending */

 pvm_pkint(&n, 1 ,1); /* Put the interval into the sending buffer */

 pvm_pkdouble(&s, 1, 1); /* Put the value of s into the sending buffer */

 pvm_pkdouble(&t, 1 ,1); /* Put the value of t into the sending buffer */

 pvm_send(ctid[0], 1);

 /* Send the content of the buffer to the first subtask */

/* */

 s=0.5;t=1; /* Secong subtask responsible for interval [0.5,1] */

 pvm_initsend(0); /* Prepare for data sending */

 pvm_pkint(&n, 1 ,1); /* Put the interval into the sending buffer */

 pvm_pkdouble(&s, 1, 1); /* Put the value of s into the sending buffe */

 pvm_pkdouble(&t, 1 ,1); /* Put the value of t into the sending buffe */

 pvm_send(ctid[1], 1);

 /* Send the content of the buffer to the second subtask */

/* */

 pvm_recv(-1, 1); /* Waiting for receiving the data from the subtasks,

 and put the data into the receiving buffer when received */

 pvm_upkdouble(&result1,1,1); /* Put the received value

 (the result from the first subtask) into result1*/

 pvm_recv(-1, 1); /* Waiting for receiving the data from the subtasks,

 and put the data into the receiving buffer when received */

 pvm_upkdouble(&result2,1,1); /*Put the received value

 (the result from the second subtask)into result2*/

/* */

 printf("Intervals=%d, PI=%1.15f",intervals,result1+result2);

 /* Show the result */

 pvm_exit(); /* End */

 exit(0);

}

(2) Slave program pi_slave.c for calculating the ratio of the circumference

/* Program for calculating PI by integral (slave program) */

#include <math.h> /* Using numerical fuctions (sqrt, etc.) */

#include "pvm3.h" /* Using pvm functions */

/* */

main()

{

 int ptid; /* Master task id */

 int n; /* Number of intercals */

 double s,t; /* Interval of integral */

 int i; /* Variable for loop */

 double h; /* Width of one interval */

 double sum=0; /* Accumulated value of the area. Initial value=0 */

 double x; /* x coordinate used at present */

/* */

 ptid = pvm_parent(); /* put master task id into ptid */

 pvm_recv(ptid, 1); /* Wating for receiving the data from master task,

 and put the data into the receiving buffer when received */

 pvm_upkint(&n, 1, 1); /*Put the interval assigned for one task into n */

 pvm_upkdouble(&s, 1 ,1); /*Put the left endpoint of the interval to s*/

 pvm_upkdouble(&t, 1 ,1); /* Put the right endpoint into t */

/* */

 h=(t-s)/n; /* Width of small intervals */

 for (i=0;i<n;++i){ /* Repeat the loop n times */

 x=(i+0.5)*h+s; /* Midpoint of x coordinate */

 sum+=(4*sqrt(1-x*x))*h; /* Calculate the area of one small interval

 and add it to sum. */

 }

/* */

 pvm_initsend(0); /* Prepare for sending data */

 pvm_pkdouble(&sum, 1, 1); /* Put sum into the sending buffer */

 pvm_send(ptid, 1); /* Send the content of the sending buffer

 into the master process */

/* */

 pvm_exit(); /* End */

 exit(0);

}

s

t

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Fig. 1 Numerical integral

PVM system

Master task

Slave task

Slave task

Master program

Slave program

Fig. 2 Execution of PVM program

pvm_spawn

Local variables

Sending buffer

pvm_pkint

pvm_pkdouble

Initiating using pvm_initsent

Master task

Local variables

Receiving buffer

pvm_pkint

pvm_pkdouble

Slave task

pvm_send

pvm_recv

Fig. 3 Communication between the master task and slave tasks

_1105278088.unknown

_1105337962.unknown

_1105355691.unknown

_1105356102.unknown

_1105356969.unknown

_1105347444.unknown

_1105337944.unknown

_1105337952.unknown

_1105337702.unknown

_1105337893.unknown

_1105337129.unknown

_1105337288.unknown

_1105277938.unknown

_1105277997.unknown

_1105277331.unknown

