INTRODUCTION

Tall fescue (Festuca arundinacea Schreb.) is the most commonly used cultivated grass in the United States to feed beef cattle. Tall fescue is a cool-season perennial grass that many cattle producers ‘can’t live with, but can’t live without’ because of its hardiness and good forage yields, but adverse effects on cattle well-being and yields. The history of this forage and its effects on animal performance have been extensively reviewed (Hemken et al., 1984; Bacon et al., 1986; Stuedemann and Hoveland, 1988; Porter and Thompson, 1992; Stuedemann and Thompson, 1993; Porter, 1994; Bacon, 1995; Paterson et al., 1995). Tall fescue was unintentionally introduced from Europe sometime in the 1800s. Early university research on growing tall fescue in the U.S. began between 1907 and 1918 in Oregon and in Kentucky in 1931 (Alderson and Sharp, 1993). Tall fescue, primarily the Kentucky-31 variety, was planted across the U.S. throughout the 1940s and 1950s because of its excellent growth under various environmental stressors. Tall fescue may be found across the eastern half of the U.S. and the Pacific Northwest covering an estimated 25 to 40 million acres of pasture and hayland. It has been estimated that over 90% of tall fescue pastures in the U.S. are infected with the fungal endophyte Neotyphodium coenophialum (Bacon and Siegel, 1988; Glenn et al., 1996). Tall fescue and the endophyte share a natural, symbiotic relationship. The endophyte protects the host plant from environmental stressors such as drought, insects, nematodes, disease pathogens, and grazing by herbivores such as cattle.

After widespread adoption of tall fescue in the 1940s, managers started to notice problems with the well-being and performance of their cattle. These problems began to be documented during the 1950s (Walls et al., 1970; Stuedemann and Hoveland, 1988). The three general problems associated with endophyte-infected tall fescue consumption by cattle are fescue foot, fat necrosis, and fescue toxicosis. Fescue foot is a condition in which cattle become lame with potential sloughing off of the hoof. The tips of the tail and ears may also be lost. Insufficient blood flow to the extremities results in fescue foot and generally occurs during winter months. Fat necrosis is the development of hard fat deposits in the abdomen that can interfere with digestion or parturition. Fescue foot and fat necrosis are relatively infrequent occurrences. Fescue toxicosis is a multifaceted
syndrome that is pervasive in tall fescue-based beef production systems across the Southeast and Midwest, extending west to eastern regions of the southern Great Plains. Cattle experiencing fescue toxicosis may exhibit rough hair coats, heat stress, suppressed appetite, poor growth, or reduced calving rates.

Fescue toxicosis is not a lethal condition and may be subclinical with the only sign being poor growth or low pregnancy rates. Although endophyte infection of tall fescue was first recognized in the early 1940s (Neill, 1941), it was not until the late 1970s that the link was made between poor animal performance and presence of the endophyte in tall fescue (Bacon et al., 1977). Numerous studies have since demonstrated the adverse effects that endophyte-infected tall fescue can have on beef cattle performance (Table 1; Paterson et al., 1995; Ball, 1997). The nutritional quality of endophyte-infected tall fescue is comparable to other similar forages and is not an influential factor in most studies. Fescue toxicosis costs the U.S. beef industry an estimated $500 million to $1 billion annually in lost revenue because of reduced reproductive and growth rates in cattle herds.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Studies reviewed</th>
<th>Low Infection Growth Rate, pounds per day</th>
<th>High infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson et al., 1993</td>
<td>12</td>
<td>1.52</td>
<td>1.11</td>
</tr>
<tr>
<td>Paterson et al., 1995</td>
<td>12</td>
<td>1.63</td>
<td>0.92</td>
</tr>
<tr>
<td>Multiple reports<sup>b</sup></td>
<td>8</td>
<td>1.69</td>
<td>0.81</td>
</tr>
<tr>
<td>Paterson et al., 1995</td>
<td>4</td>
<td>87</td>
<td>59</td>
</tr>
<tr>
<td>Burke et al., 2001</td>
<td>16</td>
<td>78</td>
<td>60</td>
</tr>
<tr>
<td>Multiple reports<sup>c</sup></td>
<td>3</td>
<td>83</td>
<td>64</td>
</tr>
</tbody>
</table>

^a Low-infected forage = low endophyte-infected tall fescue, endophyte-free tall fescue, or alternative forage.

^b Cole et al., 2001; Bouton, 2002; Andrae, 2003.

^c Fanning et al., 1992; Peters et al., 1992; Best et al., 2002.

CLINICAL MODE OF ACTION

The search for the causative agent(s) of tall fescue toxicosis has been ongoing since animal disorders were first recognized. These efforts preceded identification of the fescue endophyte as a key component of the toxicosis scenario (Jacobson et al., 1963; Walls et al., 1970). It is now understood the endophyte produces numerous chemical compounds
responsible for the hardiness of tall fescue under environmental stress (TePaske et al., 1993; Porter, 1994, 1995). Various compounds isolated from endophytic fescue have been tested over the years to determine their likely contribution to toxicoses in cattle (Thompson and Porter, 1990; Strickland et al., 1993). Ergot alkaloids have emerged as the generally accepted toxic agents of the tall fescue endophyte. Of the ergot alkaloids, ergopeptides and lysergic acid amides have received the most research attention, primarily the ergopeptides.

The basic chemical structure of ergot alkaloids is very similar to dopamine, noradrenaline, and serotonin (Berde and Strumer, 1978; Muller-Schweinitzer and Weidmann, 1978). These three compounds are neurotransmitters normally found in the body that regulate a myriad of physiological traits such as appetite, cardiovascular function, endocrine activity, gastrointestinal motility, muscle contraction, and temperature regulation. Ergot alkaloids have diverse pharmacological properties because they are able to interact with dopaminergic, alpha-adrenergic, and serotoninergic receptors in the body (Berde and Strumer, 1978; Muller-Schweinitzer and Weidmann, 1978; Pertz and Eich, 1999). Some neurotransmitter-regulated physiological traits are altered after grazing endophyte-infected tall fescue because of the pharmacological activities of ergot alkaloids consumed (Oliver, 1997).

Ergovaline is the most abundant ergopeptide detected in endophyte-infected tall fescue (Belesky et al., 1988). As such, testing of fescue samples for ergovaline concentration is done in an attempt to indicate the toxic potential of tall fescue pasture or hay (Schnitzius et al., 2001). In the laboratory, ergovaline caused vasoconstriction in isolated bovine tissue (Dyer, 1993). Vasoconstriction is considered the reason animals suffering from fescue toxicosis experience lowered peripheral skin temperature. Peripheral vasoconstriction reduces blood flow to the skin, thus lowering skin temperature. Reduced blood flow to the extremities can also result in fescue foot. Purified ergovaline, administered intravenously, altered cardiovascular function, reduced skin temperature, and induced heat stress in sheep wethers and horse geldings (Bony et al., 2001; McLeay et al., 2002). Similar studies of purified ergovaline effects on cattle have not been published.

Ergotamine is an ergopeptide found in endophyte-infected tall fescue at lower levels than ergovaline (Yates et al., 1985). Ergotamine and ergovaline have similar structures and pharmacodynamic properties (Porter, 1994; Larson et al., 1999; Schoning et al., 2001). McLeay and co-workers (2002) found that ergotamine and ergovaline had similar effects on cardiovascular and thermoregulatory function in sheep. Several studies have been conducted where cattle have been treated with purified ergotamine. Ergotamine administered to cattle intramuscularly lowered tail skin temperature (Carr and Jacobson, 1969). In the lab, ergotamine caused vasoconstriction in isolated bovine tissue (Solomons et al, 1989). Vasoconstriction would explain lowered tail skin temperature. Osborn et al. (1992) demonstrated that consumption of ergotamine by steers induced physiological changes that were similar to responses in steers that consumed endophyte-infected tall fescue. These changes included decreased feed intake and peripheral skin temperature, increased rectal temperatures and respiration rates, and reduced weight gain (Table 2). In a series of studies where cattle were administered ergotamine intravenously, the ergopeptine alkaloid significantly altered vital signs (e.g., increased blood pressure and
respiration rates, reduced tail skin temperature; Browning and Leite-Browning, 1997; Browning, 2000) and plasma concentrations of metabolic hormones (e.g., increased thyroid hormone, reduced insulin; Browning et al., 1998a, 2000) and reproductive hormones (e.g., increased prostaglandin F$_2$alpha, reduced luteinizing hormone; Browning et al., 1998b, 2001).

Table 2. Signs of fescue toxicosis induced in steers fed endophyte-free tall fescue with ergotamine added to the diet.a

<table>
<thead>
<tr>
<th>Traits b</th>
<th>Ergotamine in the diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Skin temperature (tail tip), °F</td>
<td>96.1</td>
</tr>
<tr>
<td>Rectal temperature, °F</td>
<td>103.1</td>
</tr>
<tr>
<td>Respiration rate, breaths per minute c</td>
<td>72</td>
</tr>
<tr>
<td>Feed intake, pounds per day</td>
<td>12.5</td>
</tr>
<tr>
<td>Weight gain, pounds per day</td>
<td>1.23</td>
</tr>
</tbody>
</table>

a Adapted from Osborn et al., 1992.

b Difference between diets for each trait was statistically significant ($P < 0.05$).

c At high ambient temperature (89.6°F).

The effects of purified ergovaline and ergotamine on cattle physiological status are generally consistent with the performance problems observed in cattle grazing endophyte-infected tall fescue. These research findings help to justify the monitoring of ergovaline levels in tall fescue intended for use in cattle diets. The ability of dietary ergovaline or any other ergot alkaloid in endophyte-infected tall fescue to affect an animal is dependent on the alkaloid crossing the gastrointestinal tract after ingestion and entering the bloodstream. One of the frustrations in the area of bovine fescue toxicosis research has been the inability to detect ergovaline or similar ergot alkaloids in the blood of cattle grazing endophytic fescue. Recent work suggests that very little ergopeptide crosses the gastrointestinal tract and the primary ergot alkaloids transported across gastrointestinal tissue are lysergic acid and lysergic acid amides (Hill et al., 2001). Lysergic acid amides (ergine, ergonovine) elicit similar physiological responses as ergopeptides in terms of vasoconstriction in isolated bovine tissue (Oliver et al., 1993) and altered vital signs and hormone profiles in cattle (Browning and Leite-Browning, 1997, Browning et al., 1997, 1998a,b). The results of Hill and coworkers (2001) have caused some to question the validity of a commonly held position that ergovaline is the primary toxin of endophyte-infected tall fescue. Data showing that orally administered ergotamine induced signs of fescue toxicosis (Osborn et al., 1992; Table 2) suggest that dietary ergopeptides or bioactive ergopeptide metabolites enter the bloodstream and tend to support the view that ergovaline is a significant toxin of endophyte-infected tall fescue to contend with.
CONTROL THROUGH CATTLE GENETICS

Direct economic impact of fescue toxicosis is generally limited to cow-calf and stocker operations. Cattle from endophyte-infected tall fescue grazing systems do not exhibit poor performance when moved to the feedlot (Beconi et al., 1995; Drouillard and Kuhl, 1999; Cole et al., 2001). Some fescue-grazed cattle exhibit compensatory gains that are economically beneficial to feedlot operators. Thus, the seedstock, commercial cow-calf, and yearling/stocker segments have a financial incentive to seek ways of minimizing or eliminating the problem. Researchers have sought to devise methods of alleviating fescue toxicosis on two fronts, forage management and animal management.

Forage Management.
The pasture management approach is aimed at reducing or eliminating dietary ergot alkaloids. Suggested forage management strategies used by producers to combat fescue toxicosis include: 1) replacing endophyte-infected tall fescue with low-endophyte tall fescue, endophyte-free tall fescue or other grass species for grazing or hay, 2) diluting endophyte-infected tall fescue with other grasses or legumes, 3) ammoniating fescue hay, and 4) increasing stocking rates on endophytic fescue pastures to prevent plant maturation and seedhead formation (Stuedemann and Thompson, 1993; Ball, 1997). Ergot alkaloids are found throughout the tall fescue plant, but are highly concentrated in seed. These approaches have had limited success. The alkaloid-producing fungus makes endophyte-infected tall fescue a robust grass species that is highly competitive and hard to replace successfully for grazing in many geographic locations.

The current focus of many plant scientists studying tall fescue is on genetic strains of endophyte with altered profiles of alkaloid production (Panaccione et al., 2001; Bouton et al., 2002). These ‘non-toxic’ or ‘novel’ endophytes would produce alkaloids that provide pest and drought resistance to the host grass, but not produce ergot alkaloids responsible for fescue toxicosis in livestock. Recently, tall fescue infected with a novel endophyte was commercially introduced that shows promise as a pasture management option for producers (Bouton, 2002; Andrae, 2003). Pasture management strategies, including the planting of tall fescue with novel endophytes, will each be used to some extent in beef cattle operations across the country. However, the time and expense involved in pasture renovation, the vast number of acres covered in endophyte-infected tall fescue, and the general reluctance of some managers to eradicate long-established, vigorous stands of tall fescue in cattle pastures may limit widespread implementation of any one practice.

Animal Management.
A lessor research focus has been on animal management procedures to help alleviate fescue toxicosis. Recent efforts to address the problem through cattle management have explored various options such as ivermectin treatment, feed additives or supplements, estrogen implantation, and vaccine development (Stuedemann and Thompson, 1993; Beconi et al., 1995). Research on these techniques has not progressed to the point of expecting any impending practical applications on an appreciable scale. Unlike endophyte-free tall fescue or the recent emergence of novel endophytes on the plant side of the problem, there have not been developments of similar magnitude on the animal side. However, like in the plant research effort where recent advancements were made by
exploiting genetic variability in endophyte populations for alkaloid production, genetic variation in cattle populations may be utilized to manage against fescue toxicosis.

Within-Breed Genetic Selection. One animal genetics approach is to identify and select animals within a herd or breed that may be less responsive to the toxic effects of the endophyte-infected tall fescue. In one study, Angus cows that had been managed on endophyte-infected tall fescue for the better part of 10+ years were screened for susceptibility to fescue toxicosis (Hohenboken et al., 1991). Results were inconclusive. A second study conducted by Gould and Hohenboken (1993) attempted to validate a producer contention that a particular Hereford bull sired calves that were resistant to fescue toxicosis. The producer claim was not supported by the controlled study. More recently, researchers have worked to select and develop inbred lines of mice that would be susceptible or resistant to fescue toxicosis. Indications are that the growth and reproductive rates of ‘resistant’ mice were affected to a lesser degree compared to the ‘susceptible’ line after eight to twelve generations of selection (Hohenboken and Blodgett, 1997; Wagner et al., 2000). However, the differences between the lines were not dramatic and post-weaning growth across diets was generally higher for the ‘susceptible’ mice. An apparent reduction in genetic merit for post-weaning growth in the ‘resistant’ animals tended to erase any weight advantage gained through their increased tolerance of an endophytic fescue diet. The mouse work did show that modest genetic changes for animal responsiveness to endophyte-infected tall fescue can be achieved.

A limitation of within-breed or within-herd selection for beef cattle improvement and fescue toxicosis resistance, aside from a possible reduction in genetic merit for growth in a resistant line, is the time required to reach eight to twelve generations. There are probably cows herds today that have been managed and selected on fescue pastures for several generations. Individual animals in those herds may have acquired some tolerance to the fescue endophyte indirectly through the selection of replacement breeding stock with desired levels of production within a fescue-based production environment. Identifying those animals would be difficult since no simple diagnostic test is available to meet that objective, but it may be possible. A preliminary report describes the screening of eight-month-old Angus bulls for rectal temperature responses to high ambient temperature and dietary endophyte-infected tall fescue seed (Lipsey et al., 1994). The bulls classified as being most ‘sensitive’ or most ‘tolerant’ based on rectal temperature responses were later used in a controlled breeding program. A diet containing ergovaline caused higher rectal temperatures in calves sired by the ‘sensitive’ bull compared to calves sired by the ‘tolerant’ bull. The history of the Angus sires used in the trial was not disclosed in the published abstract (Lipsey et al., 1994). Identifying and selecting cattle for resistance to fescue toxicosis is a challenging proposition for the producer and researcher alike, but should not be discounted. Indirect selection is likely occurring on farms using endophyte-infected tall fescue as the primary forage.

Breed Differences on Endophyte-Infected Tall Fescue. Heat stress is a well-documented consequence of fescue toxicosis, especially during summer. Cattle suffering from fescue toxicosis often exhibit elevated respiration rates and open-mouth panting, increased time spent under shade, creation of and lying in mud wallows, and decreased daytime grazing. These behaviors are attempts to dissipate excess body heat. Peripheral vasoconstriction
hinders the loss of body heat through the skin, thus creating a build-up of internal body heat resulting in increased internal body temperature (Al-Haidary et al., 2001). Hyperthermia in cattle experiencing fescue toxicosis has led to experimentation on the potential of heat-tolerant germplasm for cattle on endophyte-infected tall fescue.

Research on differences between heat-tolerant and heat-sensitive cattle breeds for responses to the tall fescue endophyte has been limited. The few studies conducted have involved stocker steers (Table 3). Goetsch et al. (1988) tested British breed crosses and Brahman crosses from April to July and from August to November. Reductions in steer growth rates over 12 weeks by endophyte-infection were deemed similar for both breeds in the spring and fall as breed × diet interactions were not significant. An exception was during the first six weeks of the fall season when a breed × diet interaction was noted as the growth of Brahman crosses was statistically less affected by the endophytic forage. Angus, Brahman × Angus, and Simmental × (Brahman × Angus) steers were examined from November to May by McMurphy et al. (1990). A breed × diet interaction was detected for post-weaning growth rates as half-blood Brahman steers were less affected by high endophyte levels than straight Angus or quarter-blood Brahman steers. Cole and coworkers (2001) did not detect a statistically significant breed × diet interaction for the growth of Brahman-cross and Angus steers when grazing fescue pastures with high or low endophyte infection levels from April to August. Numerical differences between the two genotypes for responsiveness to high endophyte diet in the work of Cole et al. (2001) were conspicuous (Table 3). Two preliminary studies comparing Angus × Brahman versus Angus or Hereford × Angus steers on high endophyte versus low endophyte or endophyte-free fescue from winter to summer did not find breed × diet interactions (Stuedemann et al., 1989; Greene et al., 1994). Unfortunately, post-weaning growth rates for each experimental steer group were not provided in the published abstracts.

Table 3. Reduced post-weaning growth for *Bos taurus* and *Bos indicus*-crossbred steers fed tall fescue with high endophyte infection compared to low or no infection.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Bos taurus</th>
<th>Bos indicus cross</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/d</td>
<td>%</td>
</tr>
<tr>
<td>Goetsch et al., 1988a</td>
<td>- 0.46</td>
<td>- 38</td>
</tr>
<tr>
<td>Goetsch et al., 1988b</td>
<td>- 0.20</td>
<td>- 16</td>
</tr>
<tr>
<td>McMurphy et al., 1990c</td>
<td>- 0.72</td>
<td>- 39</td>
</tr>
<tr>
<td>McMurphy et al., 1990d</td>
<td>- 0.72</td>
<td>- 39</td>
</tr>
<tr>
<td>Cole et al., 2001</td>
<td>- 0.55</td>
<td>- 86</td>
</tr>
</tbody>
</table>

* Spring
* Fall
* *Bos indicus* cross = Brahman × Angus
* *Bos indicus* cross = Simmental × (Brahman × Angus)
The lack of statistically significant breed × diet interactions in most individual studies with Brahman crossbred steers implies that high endophyte-infected tall fescue adversely affected the growth of Brahman-crossbred steers the same as in steers without Brahman influence. However, a consistent trend is apparent if individual breed evaluation studies are assessed collectively (Table 3). High endophyte infestation invariably reduced growth rates of Brahman-cross steers to a lesser degree than it did in steers without Brahman influence. Brahman genetics reduced the adverse effects of endophyte-infected tall fescue on steer growth by an average of 26% (range = 10 to 65%). The actual growth rates of Brahman-cross steers on high endophyte pastures were equal to or greater than steers without Brahman influence that grazed low or noninfected pastures, with one exception for the quarter-blood Brahman steers (Goetsch et al., 1988; McMurphy et al., 1990; Cole et al., 2001). A summary of Table 3 leads to a reasonable conclusion that heat tolerant genetics, Brahman germplasm in particular, would be a useful animal management option to lessen the impact of fescue toxicosis in beef cattle herds.

Rectal temperatures were measured by McMurphy et al. (1990) and Cole et al. (2001). In both reports, Angus steers on high endophyte-infected tall fescue diets had elevated rectal temperatures at the end of the grazing period, whereas rectal temperatures Brahman × Angus steers were unaffected by diet. McMurphy and coworkers (1990) also noted that rectal temperatures in steers with lower Brahman influence, (i.e., Simmental × [Brahman × Angus]), did have elevated respiration rates on high endophyte fescue. Rectal temperatures were not affected by diet in any breed during cooler intermediate measurement periods between December and April, although breed × diet interactions showed the weight gain of Brahman × Angus to be less inhibited by high endophyte tall fescue during some of those same intermediate time intervals (McMurphy et al., 1990).

The studies cited in Table 3 encompass every month of the year, suggesting that the benefits of Brahman germplasm for reducing the problem of poor growth on endophyte-infected tall fescue may not be limited to the summer months. These reports led to work to assess the comparative responsiveness of Brahman to ergopeptides. In one experiment, fullblood Brahman and Hereford steers were similar in immediate cardiovascular and peripheral skin temperature responses to ergotamine administered intravenously (Browning, 2000). The same steers were observed for a slightly longer period of time in a second study of ergotamine treatment (Browning and Thompson, 2002). Over a four-hour period, Brahman steers appeared more sensitive than Hereford steers in terms of several hormones and metabolites (Figure 1). Most notable were the respiratory and thyroid hormone response in which ergotamine increased respiration rates and plasma triiodothyronine concentrations in the Hereford but not the Brahman (Browning and Thompson, 2002). The ergotamine studies involving Brahman steers and the data of Table 3 agree in suggesting that Brahman and their crosses differ in their responsiveness to ergot alkaloids when compared to cattle not carrying Brahman genetics.
Recent studies evaluated the performance of another heat-tolerant breed on endophyte-infected tall fescue (Table 4; Browning, 2002a,b). In one experiment, purebred Senepol and Hereford yearling steers were fed high endophyte-infected tall fescue or orchardgrass (hay + seed) from July to October. Both breeds showed clinical signs of heat stress when consuming tall fescue as respiration rates and time spent under the shade were increased by the fescue diet. The growth rate in Hereford steers dropped by 50% on tall fescue. Considering the heat stress exhibited by Senepol steers on fescue, it was remarkable that their 12-week weight gain was not significantly affected (Table 4). In a second experiment, the same Senepol and Hereford steers, as two-year-olds, were fed high endophyte-infected tall fescue or orchardgrass (hay) from mid-July to early September. In this second test, neither breed showed clinical signs of heat stress when consuming tall fescue. Respiration rates and time spent under the shade did not differ between the diets. Nevertheless, six-week weight gain in the Hereford steers was reduced by over 80% on tall fescue hay, whereas six-week weight gain in the Senepol steers was unaffected (Table 4). In both experiments, breed × diet interactions were clearly evident for daily weight gain. Two points should be noted regarding Senepol responses to fescue immediately after introduction of seed to the diets. First, yearling Senepol steers in Experiment 1 had reduced weight gain during the first month when the fescue seed and hay were introduced, although not as dramatic as seen in the Hereford steers. The Senepol compensated for lost early growth by the end of the four-month fescue toxicosis study. Second, seed was added to the diets of two-year-old steers after the conclusion of Experiment 2 for an additional six-week fall observation period and both breeds had a subsequent cessation of growth during that interval.

Research data on Senepol and Hereford cattle do not indicate that Senepol are resistant of fescue toxicosis. To the contrary, indicator traits in Experiment 1 distinctly show that tall fescue caused the Senepol steers to ‘lose their cool’ as they appeared heat stressed. Additionally, the growth rates of Senepol dropped immediately after introduction of fescue seed to the diet. Remember that ergot alkaloids are highly concentrated in the endophyte-infected tall fescue seed. Nevertheless, this work does suggest that Senepol are resilient under an endophytic fescue challenge. Basic physiological reasons for this expression in the Senepol steers are currently being investigated. There are a number of unique
physiological characteristic of heat tolerance in cattle that may come into play, but an examination of these adaptive traits is beyond the scope of this discussion. What is germane to this discussion is the general conclusion drawn when the fescue toxicosis experiments involving Senepol purebreds is added to the body of information on Brahman crossbred steer responses to endophyte-infected tall fescue. The use of heat tolerant breeds does appear to be a viable animal management option for cattle managers to consider when developing strategies to overcome fescue toxicosis. Moreover, the benefits do not appear to be limited to the summer months.

One caveat to recommending the use of heat-tolerant cattle in breeding programs is that practically all of the fescue toxicosis research published to date involving tropically-adapted breeds has focused on post-weaning, stocker steers. These data could have some relevance for replacement heifer development. Comparable studies have not been published that indicate the potential benefits of heat-tolerant genetics for reducing the negative effects of fescue toxicosis on cow reproductive rates or preweaning calf growth. Fescue toxicosis research evaluating heat tolerant genetics for cow-calf production is needed. Additional studies of post-weaning cattle growth and behavior on high endophyte-infected tall fescue that consider various purebred and crossbred presentations of heat-tolerant beef cattle genetics would also be useful.

Table 4. Thermoregulatory traits and weight gain for Hereford (H) and Senepol (S) steers fed endophyte-infected tall fescue (TF) or orchardgrass (OG).\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>HOG</th>
<th>HTF</th>
<th>SOG</th>
<th>STF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiration Rate, breaths per minute</td>
<td>77(^f)</td>
<td>96(^d)</td>
<td>50(^g)</td>
<td>87(^c)</td>
</tr>
<tr>
<td>Daytime Shade Use, % of observations</td>
<td>53(^f)</td>
<td>91(^d)</td>
<td>5(^g)</td>
<td>77(^c)</td>
</tr>
<tr>
<td>Growth Rate, pound per day</td>
<td>1.28(^d)</td>
<td>0.64(^e)</td>
<td>1.22(^d)</td>
<td>1.16(^d)</td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiration Rate, breaths per minute</td>
<td>83(^d)</td>
<td>88(^d)</td>
<td>46(^c)</td>
<td>52(^c)</td>
</tr>
<tr>
<td>Daytime Shade Use, % of observations</td>
<td>41(^d)</td>
<td>44(^d)</td>
<td>7(^c)</td>
<td>7(^c)</td>
</tr>
<tr>
<td>Growth Rate, pounds per day</td>
<td>1.12(^d)</td>
<td>0.20(^e)</td>
<td>1.25(^d)</td>
<td>1.22(^d)</td>
</tr>
</tbody>
</table>

\(^a\) Adapted from Browning, 2002a,b.
\(^b\) Yearling steers fed hay + seed diets from July to October.
\(^c\) Two-year-old steers fed hay diets from July to September.
\(^d,e,f,g\) Group averages with different letters within a row differ \((P < 0.01)\).
CONCLUSION

Cattle performance is generally dependent on two primary factors: the production environment and the genetic composition of the animal. Tall fescue, as a forage widely used to provide nutrients to a large number of cattle, is a major environmental component of many beef production systems. Most tall fescue is infected with an endophyte that has adverse effects on cattle. Poor cattle well-being and performance on endophyte-infected tall fescue, independent of nutrient content, is usually a consequence of the condition known as fescue toxicosis. Fescue ‘endophyte’ toxicosis is probably a more appropriate term since it is the endophyte, not the fescue, that is primarily responsible for the condition. Cattle managers can address this economically significant problem by altering the environmental input through consideration of various forage management options.

Alternatively, cattle managers may consider dealing with the problem of fescue toxicosis through the manipulation of animal genetic composition. Evaluating and selecting animals, breeds, breed-crosses, or biological types that perform best in a particular production environment is not a new concept in the beef cattle industry. This report does highlight the potential to exploit beef cattle genetic diversity, especially through tropically-adapted cattle, as a means of enhancing cattle performance in a challenging production environment, the high endophyte-infected tall fescue pasture. Any genetic management decision-making process for beef cattle should, of course, include assessing the general merits of any breed or breed-cross for reproductive, growth and carcass traits, independent of tall fescue considerations. Beyond that, the use of tropically-adapted breeds shows promise as a management option to mitigate problems of fescue toxicosis and improve cattle performance. Additional experimentation will help to further explore the benefits of heat-tolerant bovine germplasm for beef cattle production on endophyte-infected tall fescue. Producers can assist in this endeavor by providing encouragement and support to researchers engaged in this effort and lobbying for additional resources to sustain and possibly expand fescue endophyte toxicosis research activities.

LITERATURE CITED

Porter, J.K. and F.N. Thompson, Jr. 1992. Effects of fescue toxicosis on reproduction in
determination of ergot alkaloids in seed, straw, and digesta samples using a
5-HT1B/1D, and alpha1 receptors in isolated arteries of rat and guinea pig. J. Anim.
Sci. 79:2202-2209.
to selected alkaloids associated with Acremonium coenophialum-infected fescue
opportunities to reduce the effects of endophyte-infested tall fescue on animal
Symp. Acremonium/Grass Interactions. Plenary papers. Feb. 3-6, Palmerston North,
New Zealand. pp 103-114.
Breedlove, M. Mehrban. 1989. Effect of level of fungus and nitrogen fertilization rate
67(Suppl. 2):46 (abstr.).
grasses for the presence of loline-type and ergot-type alkaloids. J. Agric. Food
Chem. 41:2299-2303.
Thompson, R.W., H.A. Fribourg, J.C. Waller, W.L. Sanders, J.H. Reynolds, J.M. Phillips,
Fontenot, R.J. Carlisle, P.P. Hunter. 1993. Combined analysis of tall fescue steer
Thompson, F.N. and J.K. Porter. 1990. Tall fescue toxicosis in cattle: could there be a
endophyte-infected fescue seed diet on traits of mouse lines divergently selected
for response to that same diet. J. Anim. Sci. 78:1191-1198
endophyte-infected, toxic KY-31 tall fescue by mass spectrometry/mass