Subspace Clustering and Its Applications

by Akram Aldroubi

Vanderbilt University

April 2015

Research supported by NSF

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Problem: Let $\mathcal{M} = \bigcup_{i=1}^{l} V_i$ where $\{V_i \subset \mathcal{H}\}_{i=1}^{l}$ is a set of subspaces of a Hilbert space \mathcal{H} . Let $\mathbf{W} = \{w_j \in \mathcal{H}\}_{j=1}^{m}$ be a set of data points drawn from \mathcal{M} :

1. determine the number of subspaces l,

- 1. determine the number of subspaces l,
- 2. determine the set of dimensions $\{d_i\}_{i=1}^l$,

- 1. determine the number of subspaces l,
- 2. determine the set of dimensions $\{d_i\}_{i=1}^l$,
- 3. find an orthonormal basis for each subspace V_i ,

- 1. determine the number of subspaces l,
- 2. determine the set of dimensions $\{d_i\}_{i=1}^l$,
- 3. find an orthonormal basis for each subspace V_i ,
- 4. collect the data points belonging to the same subspace into the same cluster.

[–] Typeset by $\mbox{FoilT}_{\!E\!X}$ –

– Typeset by $\mbox{Foil}{\rm T}_{\!E\!X}$ –

Example 1

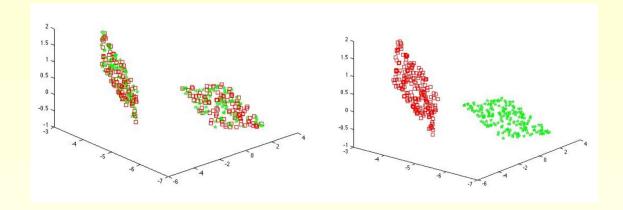


Figure 1: Data \mathcal{F} belongs to two planes in \mathbb{R}^3 . Left panel: Starting with two initial clusters, green is supposed to belongs one cluster, while red is supposed to belong to another cluster. Right panel: Solution after clustering.

Motivation

– Typeset by $\operatorname{\mathsf{FoilT}}_{\!E\!X}$ –

• Computer vision: Motion tracking in video; face recognition,...(Kanade, Costeira, Yan, Pollefeys, Gear, Vidal, Sekmen, ...)

- Computer vision: Motion tracking in video; face recognition,...(Kanade, Costeira, Yan, Pollefeys, Gear, Vidal, Sekmen, ...)
- Signal Modeling: Shift-invariant space models; Signal with finite rate of innovation; etc... (innovation)(Shannon, Gabor, Do, Lu, Vetterli, Dragotti, Blu, Sun,...)

- Computer vision: Motion tracking in video; face recognition,...(Kanade, Costeira, Yan, Pollefeys, Gear, Vidal, Sekmen, ...)
- Signal Modeling: Shift-invariant space models; Signal with finite rate of innovation; etc... (innovation)(Shannon, Gabor, Do, Lu, Vetterli, Dragotti, Blu, Sun,...)
- Compressed sensing: Sparsification bases, dictionary learning,... (Candes, Tao, Vetterli, ...)

- Computer vision: Motion tracking in video; face recognition,...(Kanade, Costeira, Yan, Pollefeys, Gear, Vidal, Sekmen, ...)
- Signal Modeling: Shift-invariant space models; Signal with finite rate of innovation; etc... (innovation)(Shannon, Gabor, Do, Lu, Vetterli, Dragotti, Blu, Sun,...)
- Compressed sensing: Sparsification bases, dictionary learning,... (Candes, Tao, Vetterli, ...)
- Learning theory: Geometry of high dimensional data, ... (Coifman, Maggioni, Lerman, ...)

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Noisy

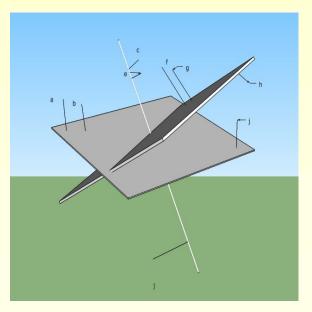


Figure 2: Non-ideal data

– Typeset by FoilT $_{\!E\!}{\rm X}$ –

Noisy

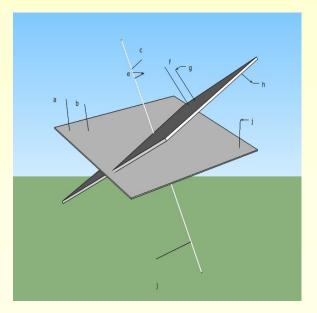


Figure 2: Non-ideal data

Data can be corrupted by noise, may have outliers or the data may not be complete, e.g., there may be missing data points.

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Structure of talk

1. Existence of solutions to the subspace clustering problem

Structure of talk

- 1. Existence of solutions to the subspace clustering problem
- 2. Signal Models: Finding signals structure from finite data

Structure of talk

- 1. Existence of solutions to the subspace clustering problem
- 2. Signal Models: Finding signals structure from finite data
- 3. Computer Vision: Motion tracking

Existence of solution

Given a set of vectors $\mathcal{F} = \{f_1, \ldots, f_m\}$ (the observed data) in some Hilbert space \mathcal{H} , find a sequence of subspaces $\{V_1, \ldots, V_l\} \subset C$ minimizing

$$e(\mathcal{F}, \{V_1, \ldots, V_l\}) = \sum_{f \in \mathcal{F}} \min_{1 \leq j \leq l} d^2(f, V_j),$$

where the class C is a set of closed subspaces of \mathcal{H} , e.g., if $\mathcal{H} = \mathbb{R}^N$, C the set of subspaces of dimension less than or equal to r, then

 $\{V_1^0,\ldots,V_l^0\} = \operatorname{argmin}\left\{e(\mathcal{F},\{V_1,\ldots,V_l\}): V_i \subset \mathbb{R}^N, \dim V_i \leq r\right\}$

– Typeset by FoilT $_{E}X$ –

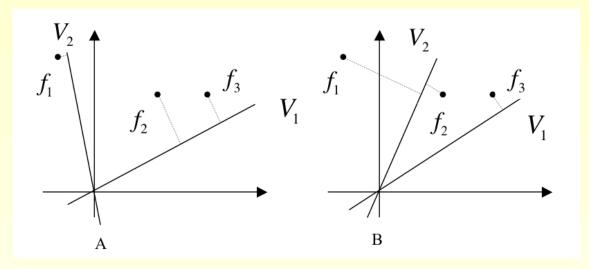


Figure 3: $C = \{ \text{subspaces of dimensions } \leq 1 \}$. Objective function: A) $e = d^2(f_1, V_2) + d^2(f_2, V_1) + d^2(f_3, V_1);$ and B) $e = d^2(f_1, V_2) + d^2(f_2, V_2) + d^2(f_3, V_1).$ Configuration of V_1, V_2 in Panel A forced the partition $P_1 = \{f_1\}$ and $P_2 = \{f_2, f_3\}$, while the configuration in B forced the partition $P_1 = \{f_1, f_2\}$ and $P_2 = \{f_3\}.$

– Typeset by FoilT_EX –

Characterization in Finite d

$$e(\mathcal{F}, \{V_1, \dots, V_l\}) = \sum_{f \in \mathcal{F}} \min_{1 \le j \le l} d^2(f, V_j), \quad V_i \in \mathcal{C}$$

C is any class of subspaces of H. Each V_i is an element of C. View C as a set of projectors with the weak op. topology. C + = C + positive operators. Characterization in Finite d

$$e(\mathcal{F}, \{V_1, \dots, V_l\}) = \sum_{f \in \mathcal{F}} \min_{1 \leq j \leq l} d^2(f, V_j), \quad V_i \in \mathcal{C}$$

C is any class of subspaces of H. Each V_i is an element of C. View C as a set of projectors with the weak op. topology. C + = C + positive operators.

Theorem 1 (A.A., Romain Tessera, FoCM 2011) Suppose \mathcal{H} has dimension d. Then TFAE

(i) A solution exists in the class C;

(ii) $co(\mathcal{C}^+) = co(\overline{\mathcal{C}^+});$

(iii) C^+ is closed.

– Typeset by $\ensuremath{\mathsf{FoilT}}_{E\!X}$ –

Signal Models

Find $\mathcal{M} = \bigcup_{i=1}^{l} V_i$ that best describe a class of images or signals from the observation of a set \mathcal{F} of m images.

Signal Models

Find $\mathcal{M} = \bigcup_{i=1}^{l} V_i$ that best describe a class of images or signals from the observation of a set \mathcal{F} of m images.

In most applications, the V_i 's describing the underlying class of signal are Shift-Invariant Spaces:

$$V(\Phi) := \operatorname{closure}_{L_2} \operatorname{span} \{ \varphi_i(x-k) : i = 1, \dots, n, k \in \mathbb{Z}^d \}$$
(1)

 $\mathcal{V}_n := \{ \text{the set of all SIS with n generators} \}$

– Typeset by Foil T_{EX} –

Signal models for a single subspace

Given a set of functions $\mathcal{F} = \{f_1, \ldots, f_m\} \subset L^2(\mathbb{R}^d)$, find the shift-invariant space V with n generators $\{\varphi_1, \ldots, \varphi_n\}$ that is "closest" to the functions of \mathcal{F} in the sense that

$$V = \operatorname{argmin}_{V' \in \mathcal{V}_n} \sum_{i=1}^m w_i \|f_i - P_{V'} f_i\|^2,$$

where w_i s are positive weights, and \mathcal{V}_n is the set of all shift-invariant spaces that can be generated by n or less generators.

Signal models for a single subspace

Given a set of functions $\mathcal{F} = \{f_1, \ldots, f_m\} \subset L^2(\mathbb{R}^d)$, find the shift-invariant space V with n generators $\{\varphi_1, \ldots, \varphi_n\}$ that is "closest" to the functions of \mathcal{F} in the sense that

$$V = \operatorname{argmin}_{V' \in \mathcal{V}_n} \sum_{i=1}^m w_i \|f_i - P_{V'} f_i\|^2,$$

where w_i s are positive weights, and \mathcal{V}_n is the set of all shift-invariant spaces that can be generated by n or less generators.

Although the set $\mathcal{F} = \{f_1, \ldots, f_m\}$ is finite the search is over infinite dimensional spaces in \mathcal{V}_n .

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Theorem 2 (A.A., Cabrelli, Hardin, Molter, ACHA 2007)

Let $\mathcal{F} = \{f_1, \ldots, f_m\}$ be a set of functions in $L^2(\mathbb{R}^d)$. Then there exists $V \in \mathcal{V}_n$ such that

$$\sum_{i=1}^{m} \|f_i - P_V f_i\|^2 \le \sum_{i=1}^{m} \|f_i - P_{V'} f_i\|^2, \quad \forall \ V' \in \mathcal{V}_n$$

1. There exists and Algorithms based on Eckhard-Young SVD.

Theorem 2 (A.A., Cabrelli, Hardin, Molter, ACHA 2007)

Let $\mathcal{F} = \{f_1, \ldots, f_m\}$ be a set of functions in $L^2(\mathbb{R}^d)$. Then there exists $V \in \mathcal{V}_n$ such that

$$\sum_{i=1}^{m} \|f_i - P_V f_i\|^2 \le \sum_{i=1}^{m} \|f_i - P_{V'} f_i\|^2, \quad \forall \ V' \in \mathcal{V}_n$$

- 1. There exists and Algorithms based on Eckhard-Young SVD.
- 2. Error estimate are found.

Theorem 2 (A.A., Cabrelli, Hardin, Molter, ACHA 2007)

Let $\mathcal{F} = \{f_1, \ldots, f_m\}$ be a set of functions in $L^2(\mathbb{R}^d)$. Then there exists $V \in \mathcal{V}_n$ such that

$$\sum_{i=1}^{m} \|f_i - P_V f_i\|^2 \le \sum_{i=1}^{m} \|f_i - P_{V'} f_i\|^2, \quad \forall \ V' \in \mathcal{V}_n$$

- 1. There exists and Algorithms based on Eckhard-Young SVD.
- 2. Error estimate are found.
- 3. Solution to the Union of Subspaces exists and is based parts 1 and 2.

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

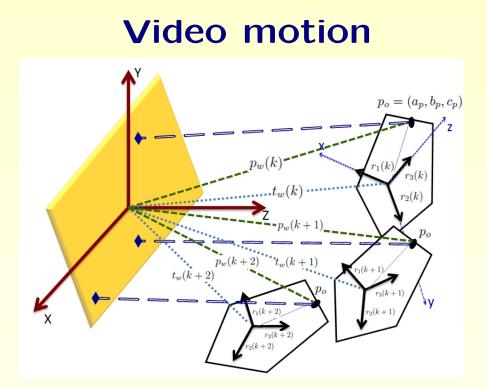


Figure 4: Affine projection of path.

Let the "trajectory" of p be $w_1 = w(p) = (X_1(p), Y_1(p), \ldots, X_N(p), Y_N(p))^t$ in \mathbb{R}^{2N} , where N is the number of frames. Then $V = \text{span}\{w_1, w_2, \ldots, w_k\}$ has $\dim V \leq 4$.

– Typeset by FoilT $_{\!E\!X}$ –

Video motion

Let $W = [w_1, w_2, \ldots, w_m]$ be a matrix whose columns are "trajectories" of m points of l moving objects. Then, the columns of W belong to a union of lsubspaces $\mathcal{M} = \bigcup_{i=1}^{l} V_i$ with dim $V_i \leq 4$.

(Loading Art2.mp4)

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Methods

- Sparsity methods (Elhamifar, Vidal, Ma, Soltanolkotabi, Candes, ...)
- Algebraic methods. e.g., Generalized Principle component Analysis (GPCA) (Vidal, Ma, Sastry,...)
- Variational methods, e.g., non-linear least squares, K-subspaces (Tseng, AA, Cabrelli, Molter, Lerman, ...)
- Statistical, e.g., Multi Stage Learning (MSL), Random Sample Consensus (RANSAC) (Fischler, Bolles,...)

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

 Spectral Clustering Methods, e.g., local affinity method (Yan Pollefeys, Lin, Zha, Chen Atev, Lerman, Szlam, AA, Sekmen...)

RREF

 $\mathcal{B} = \mathbb{R}^D$, $\mathcal{F} = \{w_j\}_{j=1}^N \subset \bigcup_{i \in I} S_i$, $W = [w_1 \cdots w_N] \in \mathbb{R}^{D \times N}$

– Typeset by FoilT $_{E\!X}$ –

RREF

$$\mathcal{B} = \mathbb{R}^D$$
, $\mathcal{F} = \{w_j\}_{j=1}^N \subset \bigcup_{i \in I} S_i$, $W = [w_1 \cdots w_N] \in \mathbb{R}^{D \times N}$

Suppose that the row reduced echelon form (Gaussian elimination) gives

$$\operatorname{rref}(W) = \begin{pmatrix} I_1 & 0 & \dots & 0 & X & 0 & \dots & 0 \\ 0 & I_2 & \dots & \vdots & 0 & X & \dots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & I_M & 0 & 0 & 0 & X \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(2)

RREF

$$\mathcal{B} = \mathbb{R}^D$$
, $\mathcal{F} = \{w_j\}_{j=1}^N \subset \bigcup_{i \in I} S_i$, $W = [w_1 \cdots w_N] \in \mathbb{R}^{D \times N}$

Suppose that the row reduced echelon form (Gaussian elimination) gives

$$\operatorname{rref}(W) = \begin{pmatrix} I_1 & 0 & \dots & 0 & X & 0 & \dots & 0 \\ 0 & I_2 & \dots & \vdots & 0 & X & \dots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & I_M & 0 & 0 & 0 & X \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(2)

There exists a permutation P such that

$$\operatorname{rref}(W) = [\operatorname{Block} \operatorname{resolved}]P,$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

if data is generic and subspaces are independent.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

data

	$\begin{bmatrix} 2872 & 138 \\ 4041 & 249 \end{bmatrix}$	$\begin{array}{ccc} 342 & 263 \\ 467 & 516 \end{array}$	$\begin{array}{ccc} 1956 & 2016 \\ 129 & 288 \end{array}$	2612 7	$\begin{array}{cccc} 801 & 195 \\ 769 & 312 \end{array}$	$174 \ 2$	$\begin{array}{ccc} 76 & 1882 \\ 41 & 176 \end{array}$	3019 3270	$\begin{bmatrix} 83\\219\end{bmatrix}$
	$\begin{array}{c} 2906 \\ 5803 \\ 1405 \end{array}$			$\begin{array}{cccc} 1847 & 6 \\ 3854 & 6 \end{array}$	$565 6968 \\ 587 2158$	$\begin{array}{ccc} 646 & 17 \\ 390 & 6 \end{array}$	$\begin{array}{ccc} 09 & 2794 \\ 29 & 628 \end{array}$	$\begin{array}{c} 2080 \ \ 2366 \\ 4711 \ \ 4654 \end{array}$	$\begin{array}{c} 1012\\ 545 \end{array}$
W =	5124 7403 5124 744	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2835 1	116 1131		$ \begin{array}{cccc} 29 & 028 \\ 74 & 762 \end{array} $	4867 4546	$\frac{545}{309}$
<i>vv</i> —	6701 3192	757 5420) 775 1248	4502 5	578 5148	578 9	19 896	5638 5354	812
	$7102 \ 1625 \\ 495 \ 223$	$802 \ 2862 \ 117 \ 577$	$2 \begin{array}{ccc} 888 & 1440 \\ 322 & 960 \end{array}$	$\begin{array}{ccc} 4793 & 5 \\ 266 & 2 \end{array}$	522 2522 2522 247 169	$\begin{array}{ccc} 672 & 10 \\ 668 & 8 \end{array}$	$\begin{array}{ccc} 64 & 1030 \\ 56 & 520 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{585}{388}$
	1184 2910	192 8282	$2 \ 435 \ 1152$	755 2	200 1482	762 10	11 654	951 970	6320
	$2065\ 1117$	$287 \ 3027$	7 4040 4800	$1376 \ 1$	159 715	1360 29	$20 \ 4100$	$1797 \ 1662$	2172

data

$$W = \begin{bmatrix} 2872 & 138 & 342 & 263 & 1956 & 2016 & 1793 & 801 & 195 & 360 & 1076 & 1882 & 1918 & 2350 & 83 \\ 4041 & 249 & 467 & 516 & 129 & 288 & 2612 & 769 & 312 & 174 & 241 & 176 & 3019 & 3270 & 219 \\ 2906 & 4292 & 352 & 7240 & 2861 & 3072 & 1847 & 665 & 6968 & 646 & 1709 & 2794 & 2080 & 2366 & 1012 \\ 5803 & 1405 & 657 & 2498 & 549 & 864 & 3854 & 687 & 2158 & 390 & 629 & 628 & 4711 & 4654 & 545 \\ 5124 & 744 & 2092 & 1335 & 662 & 1056 & 2835 & 1116 & 1131 & 484 & 774 & 762 & 4867 & 4546 & 309 \\ 6701 & 3192 & 757 & 5420 & 775 & 1248 & 4502 & 578 & 5148 & 578 & 919 & 896 & 5638 & 5354 & 812 \\ 7102 & 1625 & 802 & 2862 & 888 & 1440 & 4793 & 522 & 2522 & 672 & 1064 & 1030 & 6059 & 5666 & 585 \\ 495 & 223 & 117 & 577 & 322 & 960 & 266 & 247 & 169 & 668 & 866 & 520 & 275 & 430 & 388 \\ 1184 & 2910 & 192 & 8282 & 435 & 1152 & 755 & 200 & 1482 & 762 & 1011 & 654 & 951 & 970 & 6320 \\ 2065 & 1117 & 287 & 3027 & 4040 & 4800 & 1376 & 159 & 715 & 1360 & 2920 & 4100 & 1797 & 1662 & 2172 \end{bmatrix}$$

Binary reduced row echelon form of W is W_b :

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Noisy data

$$\operatorname{rref}(W) = \begin{pmatrix} I_1 & x & \dots & x & X & x & \dots & x \\ x & I_2 & \dots & \vdots & x & X & \dots & x \\ x & x & \ddots & x & x & x & \ddots & x \\ \vdots & \vdots & \ddots & I_M & x & x & x & X \\ x & x & \dots & x & x & x & x & x \end{pmatrix}$$
(3)

– Typeset by $\operatorname{\mathsf{FoilT}}_{\!E\!X}$ –

Noisy data

$$\operatorname{rref}(W) = \begin{pmatrix} I_1 & x & \dots & x & X & x & \dots & x \\ x & I_2 & \dots & \vdots & x & X & \dots & x \\ x & x & \ddots & x & x & x & \ddots & x \\ \vdots & \vdots & \ddots & I_M & x & x & x & X \\ x & x & \dots & x & x & x & x & x \end{pmatrix}$$
(3)

Threshold?

$$\operatorname{rref}(W) = \begin{pmatrix} I_1 & 0 & \dots & 0 & X & 0 & \dots & 0 \\ 0 & I_2 & \dots & \vdots & 0 & X & \dots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & I_M & 0 & 0 & 0 & X \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix}$$
(4)

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Noisy data

 $A^{-1}W = \operatorname{rref}(W) \Rightarrow$ sensitive to $\sigma_{min}(A) = ||A^{-1}||$. Estimation of $\sigma_{min}(A)$ in terms of relative positions of subspaces:

Theorem 3 (A, Ali Sekmen) Assume $d_i = \dim S_i$ and $D = \sum_i d_i$. Let $\{\theta_j(S_i)\}_{j=1}^{\min(d_i, D-d_i)}$ be the principle angles between S_i and $\sum_{\ell \neq i} S_\ell$. Then

$$\sigma_{\min}^2(A) \le \min_i \left(\prod_{j=1}^{\min(d_i, D-d_i)} \left(1 - \cos^2(\theta_j(S_i))\right)\right)^{1/D},$$
 (5)

where $\sigma_{\min}(A)$ is the smallest singular value of A.

Performance of rref

Thresholding rref algorithms does not work very well in the presence of noise. It can be used as initial stage of an iterative algorithms.

Performance of rref

Thresholding rref algorithms does not work very well in the presence of noise. It can be used as initial stage of an iterative algorithms.

Is there a way of modifying rref algorithm to get good segmentation even in the presence of moderate noise?

Nearness to Local Subspace Algorithm

W an $m \times N$ data matrix with columns from a union of l subspaces of dimensions at most d, possibly noisy.

- 1. Dimensionality reduction: $W \rightarrow V_r$ ($r \approx l \times d \ll N$)
- 2. Normalization: Place data of V_r on sphere \mathbb{S}^{r-1}
- 3. Local Subspace Estimation: For each $x_i \in \mathbb{S}^{r-1}$ find a d-dim. subspace $L_{loc}(x_i)$ nearest to $\{x_i, x_{i_1}, ..., x_{i_k}\}$ consisting of x_i and $k \ge d$ closest neighbors.
- 4. Similarity matrix S: Construct an $N \times N$ similarity matrix based on $L_{loc}(x_i)$.

[–] Typeset by $\mbox{FoilT}_{\!E\!X}$ –

5. Spectral clustering: Problem is again a subspace segmentation for similarity matrix S, but each subspace is 1-dim. and there are l subspaces. Apply SVD to obtain $S_l = U_l \Sigma_l V_l^t$ and Cluster the columns of V_l^t $(l \times N)$ using k-means.

Testing on video motion

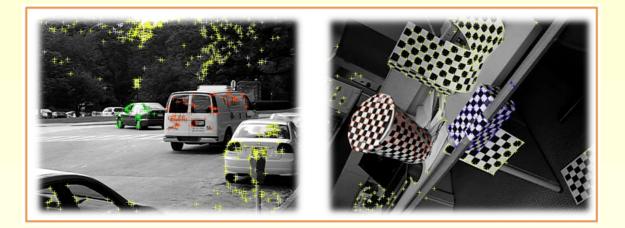


Figure 5: Samples from the Hopkins 155 Dataset.

Testing on video motion

Checker (78)	GPCA	LSA	RANSAC	MSL	ALC	SSC-B	SSC-N	NLS
Average	6.09%	2.57%	6.52%	4.46%	1.55%	0.83%	1.12%	0.23%
Median	1.03%	0.27%	1.75%	0.00%	0.29%	0.00%	0.00%	0.00%
Traffic (31)	GPCA	LSA	RANSAC	MSL	ALC	SSC-B	SSC-N	NLS
Average	1.41%	5.43%	2.55%	2.23%	1.59%	0.23%	0.02%	1.40%
Median	0.00%	1.48%	0.21%	0.00%	1.17%	0.00%	0.00%	0.00%
Articulated (11)	GPCA	LSA	RANSAC	MSL	ALC	SSC-B	SSC-N	NLS
Articulated (11) Average	GPCA 2.88%	LSA 4.10%	RANSAC 7.25%	MSL 7.23%	ALC 10.70%	SSC-B 1.63%	SSC-N 0.62%	NLS 1.77%
Average	2.88%	4.10%	7.25%	7.23%	10.70%	1.63%	0.62%	1.77%
Average Median	2.88% 0.00%	4.10% 1.22%	7.25% 2.64%	7.23% 0.00%	10.70% 0.95%	1.63% 0.00%	0.62% 0.00%	1.77% 0.88%
Average Median All (120 seq)	2.88% 0.00% GPCA	4.10% 1.22% LSA	7.25% 2.64% RANSAC	7.23% 0.00% MSL	10.70% 0.95% ALC	1.63% 0.00% SSC-B	0.62% 0.00% SSC-N	1.77% 0.88% NLS

% classification errors for sequences with two motions.

Three motions

Checker (26)	GPCA	LSA	RANSAC	MSL	ALC	SSC-B	SSC-N	NLS
Average	31.95%	5.80%	25.78%	10.38%	5.20%	4.49%	2.97%	0.87%
Median	32.93%	1.77%	26.00%	4.61%	0.67%	0.54%	0.27%	0.35%
Traffic (7)	GPCA	LSA	RANSAC	MSL	ALC	SSC-B	SSC-N	NLS
Average	19.83%	25.07%	12.83%	1.80%	7.75%	0.61%	0.58%	1.86%
Median	19.55%	23.79%	11.45%	0.00%	0.49%	0.00%	0.00%	1.53%
Articulated (2)	GPCA	LSA	RANSAC	MSL	ALC	SSC-B	SSC-N	NLS
Articulated (2) Average	GPCA 16.85%	LSA 7.25%	RANSAC 21.38%	MSL 2.71%	ALC 21.08%	SSC-B 1.60%	SSC-N 1.60%	NLS 5.12%
								5.12%
Average	16.85%	7.25%	21.38%	2.71%	21.08%	1.60%	1.60%	5.12%
Average Median	16.85% 16.85%	7.25% 7.25%	21.38% 21.38%	2.71% 2.71%	21.08% 21.08%	1.60% 1.60%	1.60% 1.60%	5.12% 5.12% NLS
Average Median All (35 seq)	16.85% 16.85% GPCA	7.25% 7.25% LSA	21.38% 21.38% RANSAC	2.71% 2.71% MSL	21.08% 21.08% ALC	1.60% 1.60% SSC-B	1.60% 1.60% SSC-N	5.12% 5.12%

% classification errors for sequences with three motions.

Two and Three Motions

All (155 seq)	GPCA	LSA	RANSAC	MSL	ALC	SSC-B	SSC-N	NLS
Average	10.34%	4.94%	9.76%	5.03%	3.56%	1.45%	1.24%	0.76%
Median								

% classification errors for all sequences.

– Typeset by $\ensuremath{\mathsf{FoilT}}_{E\!X}$ –

Review article (Open access): A Review of Subspace Segmentation: Problem, Nonlinear Approximations, and Applications to Motion Segmentation

http://www.hindawi.com/journals/isrn/2013/417492/

Thank you

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –