Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

Shift-Invariant Spaces with Extra Invariance

Michael Northington V¹

Department of Mathematics Vanderbilt University

Under the supervision of Alexander Powell and Douglas Hardin

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Introduction Examples

Uncertainly Principles Balian-Low Theorem BLT for SIS

3 Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

4 Generators of SIS

5 Sobolev Spaces of Periodic Functions

Shift Invariant Spaces

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

- $L^2(\mathbb{R}^d) = \{ f : \int_{\mathbb{R}^d} |f(x)|^2 dx < \infty \}$
- T_k , defined by $T_k f(x) = f(x k)$ is called a *Shift Operator*.
- A closed subspace V ⊂ L²(ℝ^d) is called a Shift Invariant Space if for any f ∈ V and any k ∈ ℤ^d, T_kf ∈ V. In other words, V is closed under shifts by integers.

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

Given
$$F \subset L^2(\mathbb{R}^d)$$
, we can build a SIS, $V(F)$.
• Let $\mathcal{T}(F) = \{T_k f_j : k \in \mathbb{Z}^d, f_j \in F\}.$

• Then let V(F) be the closed span of $\mathcal{T}(F)$, i.e.

$$V(F) = \overline{\operatorname{span}(\mathcal{T}(F))}^{L^2(\mathbb{R}^d)}$$

- The elements of ${\cal F}$ are called generators of $V({\cal F}).$
- If F is finite, V(F) is called finitely generated.

• If $F = \{f\}$ then V(F) = V(f) is called singly generated or principal.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

- SIS are often used as approximation spaces in numerical analysis.
- For algorithms involving singly generated SIS, only one function needs to be stored.
- Many properties of V(F) can be traced back to properties of F.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

- Given a lattice $\mathbb{Z}^d \subset \Gamma \subset \mathbb{R}^d$, V(F) is said to be Γ -invariant if $f \in V(F)$ implies that $T_{\gamma} f \in V(F)$ for all $\gamma \in \Gamma$.
- V(F) is said to be *translation invariant* if $f \in V(F)$ implies that $T_t f \in V(F)$ for all $t \in \mathbb{R}^d$, i.e if V(F) is \mathbb{R}^d -invariant.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Riesz Bases and Frames

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spaces with Extra Invariance

Shift-Invariant

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Spaces

Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem A collection {h_n}[∞]_{n=1} in a Hilbert space H is a Riesz Basis for H if there exist constants 0 < A ≤ B < ∞ such that

$$\forall c = (c_n) \in l^2(\mathbb{N}), \ A \|c\|_{l^2(\mathbb{N})}^2 \le \|\sum_{n=1}^{\infty} c_n h_n\|^2 \le B \|c\|_{l^2(\mathbb{N})}^2.$$

~

• A collection $\{h_n\}_{n=1}^{\infty}$ in a Hilbert space \mathcal{H} is a *frame* for \mathcal{H} if there exist constants $0 < A \leq B < \infty$ such that

$$\forall h \in \mathcal{H}, \quad A \|h\|_{\mathcal{H}}^2 \le \sum_{n=1}^{\infty} |\langle h, h_n \rangle|^2 \le B \|h\|_{\mathcal{H}}^2.$$

Examples of SIS

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Spaces

Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

- Paley Wiener Space - $\{g \in L^2(\mathbb{R}^d) : \widehat{g}(\xi) = 0 \text{ for } |\xi| > \frac{1}{2}\}.$
- Splines with integer knots contained in $L^2(\mathbb{R})$ S_n^{n-1}
 - Gabor Spaces $span\{f(x-k)e^{2\pi inx}: n, k \in \mathbb{Z}\}.$
- Wavelet Spaces - $\overline{\operatorname{span}\{a^{-k/2}f(a^{-k}x - nb): n, k \in \mathbb{Z}\}}.$

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

Examples of Singly Generated SIS

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Paley Wiener Space - $\{g \in L^2(\mathbb{R}^d) : \widehat{g}(\xi) = 0 \text{ for } |\xi| > \frac{1}{2}\}.$

- Splines with integer knots contained in $L^2(\mathbb{R})$
- Gabor Spaces -

$$\overline{\operatorname{span}\{f(x-k)e^{2\pi inx}:n,k\in\mathbb{Z}\}}.$$

• Wavelet Spaces -
span{
$$a^{-k/2}f(a^{-k}x - nb): n, k \in \mathbb{Z}$$
}.

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Paley Wiener Space, PW, or the Space of Bandlimited Functions

• $g \in PW \iff$ the Fourier Transform of g given by,

$$\widehat{g}(\xi) = \int_{\mathbb{R}} g(x) e^{2\pi i \xi x} dx$$

is zero outside of $\left[-\frac{1}{2},\frac{1}{2}\right]$.

• Let
$$f = \operatorname{sin}(x) = \frac{\sin(\pi x)}{\pi x}$$

• Then PW is generated by f, or

$$PW = V(f).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

Sinc

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

- If $g \in PW$, and $\lambda \in \mathbb{R}$, then $T_{\lambda}g(x) = g(x \lambda)$ is also in PW.
- This is true since

$$\widehat{T_{\lambda}g}(\xi) = e^{2\pi i\lambda\xi}\widehat{g}(\xi).$$

• Thus, *PW* is translation invariant.

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Spline Spaces - S_n^{n-1}

- $f \in S_n^{n-1} \iff f$ restricted to [k, k+1] is a polynomial of degree $n, f \in L^2(\mathbb{R})$, and $f \in C^{n-1}(\mathbb{R})$.
- Let β_0 be the characteristic function of [0,1], and iteratively define

$$\beta_n(x) = \int_{\mathbb{R}} \beta_{n-1}(x-t)\beta_0(t)dt.$$

• Then S_n^{n-1} is a SIS generated by β_n , or

$$S_n^{n-1} = V(\beta_n).$$

・ロト ・聞ト ・ヨト ・ヨト æ

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

- For some $f \in S_n^{n-1}$ consider shifting f by a non-integer $\lambda \in \mathbb{R}$.
- This has the effect of shifting the knots into the interior of the intervals.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Clearly, we can find some $f \in S_n^{n-1}$ where $T_{\lambda}f \notin S_n^{n-1}$.
- Thus, S_n^{n-1} has no extra invariance.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction

Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

- PW is translation invariant, and the generator decays slowly (like $\frac{1}{x}$).
- S_n^{n-1} has compactly supported generators, and it has no extra invariance.
- It turns out that this kind of behavior holds in general and not just for these two examples.

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

- An uncertainty principle in harmonic analysis is a result which constrains how well-localized a function f or its Fourier transform \hat{f} can be.
- A famous uncertainty principle is given by the *d*-dimensional Heisenberg inequality: $\forall f \in L^2(\mathbb{R}^d)$,

$$\left(\int_{\mathbb{R}^d} |x|^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}^d} |\xi|^2 |\widehat{f}(\xi)|^2 d\xi\right) \geq \frac{d^2}{16\pi^2} \|f\|_{L^2(\mathbb{R}^d)}^4$$

Balian-Low Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem

BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

- The Balian-Low Theorem for Gabor Systems is another example of an Uncertainty Principle.
- Given $f \in L^2(\mathbb{R})$ the associated Gabor system $\mathcal{G}(f, 1, 1) = \{f_{m,n}\}_{m,n \in \mathbb{Z}}$ is defined by $f_{m,n}(x) = e^{2\pi i m x} f(x - n).$

Michael Northington V

Introduction Examples

Uncertainl Principles

Balian-Low Theorem

BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Theorem (Balian-Low Theorem) Let $f \in L^2(\mathbb{R})$. If $\mathcal{G}(f, 1, 1)$ is an orthonormal basis for $L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} |x|^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} |\xi|^2 |\widehat{f}(\xi)|^2 d\xi\right) = \infty.$$

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples

Uncertainly Principles Balian-Low Theorem BLT for SIS

Sobolev

Fourier Transform and

Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem • In fact, Balian-Low type theorems exist for generators of Shift Invariant Spaces.

Theorem (Aldroubi, Sun, Wang-2010)

Suppose that $f \in L^2(\mathbb{R})$ and that $\mathcal{T}(f)$ is a Riesz Basis for V(f). If V(F) is $\frac{1}{n}\mathbb{Z}$ -invariant then for all $\epsilon > 0$,

$$\int_{\mathbb{R}} |x|^{1+\epsilon} |f(x)|^2 dx = \infty.$$

Michael Northington V

Introduction Examples Uncertainly Principles Balian-Low Theorem

BLT for SIS Sobolev

Spaces Fourier

Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

Theorem (Tessera, Wang-2013)

Let $f \in L^2(\mathbb{R}^d)$ and $\mathbb{Z}^d \subset \Gamma$ is a lattice. Suppose that $\mathcal{T}(f)$ is a frame for V(f). If V(f) is Γ -invariant then for any $\epsilon > 0$,

$$\int_{\mathbb{R}^d} |x|^{d+\epsilon} |f(x)|^2 dx = \infty.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples Uncertainly Principles Balian-Low

Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

Theorem (Hardin, Northington, Powell)

Fix a lattice $\mathbb{Z}^d \subset \Gamma \subset \mathbb{R}^d$ and $f \in L^2(\mathbb{R}^d)$. Suppose that $\mathcal{T}(f)$ is a frame for V(f). If V(f) is Γ -invariant then

$$\int_{\mathbb{R}^d} |x| \, |f(x)|^2 dx = \infty.$$

Smoothness vs Decay

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Consider the following for $f \in L^2(\mathbb{R})$.

$$\widehat{f'}(\xi) = \int_{\mathbb{R}^d} f'(x) e^{2\pi i x \xi} dx$$
$$= (2\pi i \xi) \int_{\mathbb{R}^d} f(x) e^{2\pi i x \xi} dx$$
$$(2\pi i \xi) \widehat{f}(\xi).$$

Fractional Sobolev Spaces

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem • For s>0, the Sobolev space $H^s(\mathbb{R}^d)$ consists of all measurable functions f defined on \mathbb{R}^d such that $f\in L^2(\mathbb{R}^d)$ and

$$\|f\|_{\dot{H}^{s}(\mathbb{R}^{d})} = \left(\int_{\mathbb{R}^{d}} |\xi|^{2s} |\hat{f}(\xi)|^{2} d\xi\right)^{1/2} < \infty.$$
(1)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

Theorem (Hardin, Northington, Powell)

٠

Fix a lattice $\mathbb{Z}^d \subset \Gamma \subset \mathbb{R}^d$ and $f \in L^2(\mathbb{R}^d)$. Suppose that $\mathcal{T}(f)$ is a frame for V(f). If V(f) is Γ -invariant then

$$\int_{\mathbb{R}^d} |x| \, |f(x)|^2 dx = \infty.$$

In other words, the generator satisfies $\widehat{f} \notin H^{1/2}(\mathbb{R}^d)$.

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem - Given a lattice $\Gamma \subset \mathbb{R}^d$ and $f \in L^2(\mathbb{R}^d),$ the Periodization of f is defined as

$$P_{\Gamma}(f)(x) = \sum_{\gamma \in \Gamma} |f(x+\gamma)|^2.$$

- The following calculation shows that the inner products of elements of $\mathcal{T}(f)$ are encoded in $P_{\mathbb{Z}^d}(\widehat{f})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

$$\langle T_k f, T_{k'} f \rangle_{L^2(\mathbb{R}^d)} = \langle e^{-2\pi i \xi \cdot k} \hat{f}, e^{-2\pi i \xi \cdot k'} \hat{f} \rangle_{L^2(\mathbb{R}^d)}$$

$$= \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot (k-k')} \hat{f}(\xi) \overline{\hat{f}(\xi)} d\xi$$

$$= \sum_{l \in \mathbb{Z}^d} \int_{[0,1]^d} e^{-2\pi i \xi \cdot (k-k')} \hat{f}(\xi-l) \overline{\hat{f}(\xi-l)} d\xi$$

$$= \int_{[0,1]^d} e^{-2\pi i \xi \cdot (k-k')} P_{\mathbb{Z}^d}(\hat{f})(\xi) d\xi$$

$$= \widehat{P_{\mathbb{Z}^d}(\hat{f})}(k-k')$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ξ.

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

Proposition (de Boor, DeVore, Ron)

Given $f \in L^2(\mathbb{R}^d)$, $\mathcal{T}(f) = \{T_k f : k \in \mathbb{Z}^d\}$ forms a Riesz basis for V(f) if and only if there exists $s \ge 1$ such that

$$s^{-1} \le P_{\mathbb{Z}^d}(\widehat{f})(\xi) \le s$$
 a.e. $x \in [0,1]^d$. (2)

Proposition (Bownik)

 $\mathcal{T}(f)$ forms a frame for V(f) if and only if there exists $s \ge 1$ such that for almost every $x \in [0, 1]^d$,

$$s^{-1}P_{\mathbb{Z}^d}(\widehat{f})(\xi) \le (P_{\mathbb{Z}^d}(\widehat{f})(\xi))^2 \le sP_{\mathbb{Z}^d}(\widehat{f})(\xi).$$
(3)

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Theorem (Aldroubi, Cabrelli, Heil, Kornelson, Molter) Let $\mathbb{Z}^d < \Gamma$ be lattices in \mathbb{R}^d . Let $R \subset \mathbb{Z}^d$ be a collection of representatives of the quotient \mathbb{Z}^d/Γ^* so that

$$P_{\mathbb{Z}^d}(\widehat{f})(\xi) = \sum_{k \in R} P_{\Gamma^*}(\widehat{f})(x+k), \ a.e. \ x \in \mathbb{R}^d.$$

The space V(f) is Γ -invariant if and only if for almost every $x \in \mathbb{R}^d$, at most one of the terms in the right hand sum is nonzero.

Fourier coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Spaces with Extra Invariance

Shift-Invariant

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem The Fourier coefficients of $f \in L^2([0,1]^d)$ are defined $\forall \xi \in \mathbb{Z}^d$,

$$\widehat{f}(\xi) = \int_{[0,1]^d} f(x) e^{-2\pi i x \cdot \xi} \, dx.$$

Also recall Parseval's theorem

$$\int_{[0,1]^d} |f(x)|^2 dx = \sum_{\xi \in \mathbb{Z}^d} |\widehat{f}(\xi)|^2$$
(4)

Periodic Sobolev Space

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shift-Invariant Spaces with Extra Invariance

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Given s > 0, define the Sobolev space $H^s([0,1]^d) = \{f \in L^2([0,1]^d) : \|f\|_{\dot{H}^s([0,1]^d)} < \infty\}$, where

$$\|f\|_{\dot{H}^{s}([0,1]^{d})}^{2} = \sum_{\xi \in \mathbb{Z}^{d}} |\xi|^{2s} |\hat{f}(\xi)|^{2}.$$

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Theorem (Hardin, Northington, Powell) Let 0 < s < 1. If $f \in H^s(\mathbb{R}^d)$ and $P_{\mathbb{Z}^d}(f)$ is bounded, then $P_{\mathbb{Z}^d}(f) \in H^s([0,1]^d).$

Michael Northington V

Introduction Examples

Uncertainl Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem Lemma (\mathbb{R}^d Proof by Bourgain, Brezis, Nirenberg) If $g \in H^{1/2}([0,1]^d)$ and for almost every $x \in [0,1]^d$, either g(x) = 0, or $g(x) \ge C > 0$ then either g(x) = 0 a.e. or $g(x) \ge C$ a.e.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Michael Northington V

Introduction Examples

Uncertainly Principles

Balian-Low Theorem BLT for SIS

Sobolev Spaces

Fourier Transform and Fractional Sobolev Spaces on \mathbb{R}^d

Generators of SIS

Sobolev Spaces of Periodic Functions

Proof of Main Theorem

- Assume $\widehat{f} \in H^{1/2}(\mathbb{R}^d)$.
- Then $P_{\mathbb{Z}^d}(\widehat{f}), P_{\Gamma^*}(\widehat{f}) \in H^{1/2}([0,1]^d).$
- Since $\mathcal{T}(f)$ forms a frame, $P_{\mathbb{Z}^d}(\widehat{f})$ is either zero, or bounded away from zero.
- Since $P_{\mathbb{Z}^d}(\widehat{f})(\xi) = \sum_{k \in R} P_{\Gamma^*}(\widehat{f})(x+k)$, we must have that $P_{\Gamma^*}(\widehat{f})$ is zero on a large set, and bounded away from zero on a large set.

• This contradicts the previous lemma.