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Shift Invariant Spaces

• L2(Rd) = {f :
∫
Rd |f(x)|2dx <∞}

• Tk, defined by Tkf(x) = f(x− k) is called a Shift
Operator.

• A closed subspace V ⊂ L2(Rd) is called a Shift Invariant
Space if for any f ∈ V and any k ∈ Zd, Tkf ∈ V . In other
words, V is closed under shifts by integers.
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Given F ⊂ L2(Rd), we can build a SIS, V (F ).

• Let T (F ) = {Tkfj : k ∈ Zd, fj ∈ F}.
• Then let V (F ) be the closed span of T (F ), i.e.

V (F ) = span(T (F ))
L2(Rd)

.

• The elements of F are called generators of V (F ).

• If F is finite, V (F ) is called finitely generated.

• If F = {f} then V (F ) = V (f) is called singly generated
or principal.
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• SIS are often used as approximation spaces in numerical
analysis.

• For algorithms involving singly generated SIS, only one
function needs to be stored.

• Many properties of V (F ) can be traced back to properties
of F .
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• Given a lattice Zd ⊂ Γ ⊂ Rd, V (F ) is said to be
Γ-invariant if f ∈ V (F ) implies that Tγ f ∈ V (F ) for all
γ ∈ Γ.

• V (F ) is said to be translation invariant if f ∈ V (F )
implies that Tt f ∈ V (F ) for all t ∈ Rd, i.e if V (F ) is
Rd-invariant.
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Riesz Bases and Frames

• A collection {hn}∞n=1 in a Hilbert space H is a Riesz Basis
for H if there exist constants 0 < A ≤ B <∞ such that

∀c = (cn) ∈ l2(N), A‖c‖2l2(N) ≤ ‖
∞∑
n=1

cnhn‖2 ≤ B‖c‖2l2(N).

• A collection {hn}∞n=1 in a Hilbert space H is a frame for
H if there exist constants 0 < A ≤ B <∞ such that

∀h ∈ H, A‖h‖2H ≤
∞∑
n=1

|〈h, hn〉|2 ≤ B‖h‖2H.
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Examples of SIS

• Paley Wiener Space -
{g ∈ L2(Rd) : ĝ(ξ) = 0 for |ξ| > 1

2}.
• Splines with integer knots contained in L2(R) - Sn−1

n

• Gabor Spaces -
span{f(x− k)e2πinx : n, k ∈ Z}.

• Wavelet Spaces -
span{a−k/2f(a−kx− nb) : n, k ∈ Z}.



Shift-
Invariant
Spaces

with Extra
Invariance

Michael
Northington V

Introduction

Examples

Uncertainly
Principles

Balian-Low
Theorem

BLT for SIS

Sobolev
Spaces

Fourier
Transform and
Fractional
Sobolev Spaces

on Rd

Generators of
SIS

Sobolev
Spaces of
Periodic
Functions

Proof of Main
Theorem

Examples of Singly Generated SIS

• Paley Wiener Space -
{g ∈ L2(Rd) : ĝ(ξ) = 0 for |ξ| > 1

2}.
• Splines with integer knots contained in L2(R)

• Gabor Spaces -
span{f(x− k)e2πinx : n, k ∈ Z}.

• Wavelet Spaces -
span{a−k/2f(a−kx− nb) : n, k ∈ Z}.
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Paley Wiener Space, PW , or the Space of Bandlimited
Functions

• g ∈ PW ⇐⇒ the Fourier Transform of g given by,

ĝ(ξ) =

∫
R
g(x)e2πiξxdx

is zero outside of [−1
2 ,

1
2 ].

• Let f = sinc(x) = sin(πx)
πx .

• Then PW is generated by f , or

PW = V (f).
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• If g ∈ PW , and λ ∈ R, then Tλg(x) = g(x− λ) is also in
PW .

• This is true since

T̂λg(ξ) = e2πiλξ ĝ(ξ).

• Thus, PW is translation invariant.
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Spline Spaces - Sn−1
n

• f ∈ Sn−1
n ⇐⇒ f restricted to [k, k + 1] is a polynomial

of degree n, f ∈ L2(R), and f ∈ Cn−1(R).

• Let β0 be the characteristic function of [0, 1], and
iteratively define

βn(x) =

∫
R
βn−1(x− t)β0(t)dt.

• Then Sn−1
n is a SIS generated by βn, or

Sn−1
n = V (βn).
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• For some f ∈ Sn−1
n consider shifting f by a non-integer

λ ∈ R.

• This has the effect of shifting the knots into the interior of
the intervals.

• Clearly, we can find some f ∈ Sn−1
n where Tλf /∈ Sn−1

n .

• Thus, Sn−1
n has no extra invariance.



Shift-
Invariant
Spaces

with Extra
Invariance

Michael
Northington V

Introduction

Examples

Uncertainly
Principles

Balian-Low
Theorem

BLT for SIS

Sobolev
Spaces

Fourier
Transform and
Fractional
Sobolev Spaces

on Rd

Generators of
SIS

Sobolev
Spaces of
Periodic
Functions

Proof of Main
Theorem

Key Points

• PW is translation invariant, and the generator decays
slowly (like 1

x).

• Sn−1
n has compactly supported generators, and it has no

extra invariance.

• It turns out that this kind of behavior holds in general and
not just for these two examples.
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Heisenberg Uncertainty Principle

• An uncertainty principle in harmonic analysis is a result
which constrains how well-localized a function f or its
Fourier transform f̂ can be.

• A famous uncertainty principle is given by the
d-dimensional Heisenberg inequality: ∀f ∈ L2(Rd),(∫

Rd

|x|2|f(x)|2dx
)(∫

Rd

|ξ|2|f̂(ξ)|2dξ
)
≥ d2

16π2
‖f‖4L2(Rd).
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Balian-Low Theorem

• The Balian-Low Theorem for Gabor Systems is another
example of an Uncertainty Principle.

• Given f ∈ L2(R) the associated Gabor system
G(f, 1, 1) = {fm,n}m,n∈Z is defined by
fm,n(x) = e2πimxf(x− n).
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Theorem (Balian-Low Theorem)

Let f ∈ L2(R). If G(f, 1, 1) is an orthonormal basis for L2(R),
then (∫

R
|x|2|f(x)|2dx

)(∫
R
|ξ|2|f̂(ξ)|2dξ

)
=∞.
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BLT for SIS

• In fact, Balian-Low type theorems exist for generators of
Shift Invariant Spaces.

Theorem (Aldroubi, Sun, Wang-2010)

Suppose that f ∈ L2(R) and that T (f) is a Riesz Basis for
V (f). If V (F ) is 1

nZ-invariant then for all ε > 0,∫
R
|x|1+ε |f(x)|2dx =∞.
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Theorem (Tessera, Wang-2013)

Let f ∈ L2(Rd) and Zd ⊂ Γ is a lattice. Suppose that T (f) is
a frame for V (f). If V (f) is Γ-invariant then for any ε > 0,∫

Rd

|x|d+ε |f(x)|2dx =∞.
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Main Result

Theorem (Hardin, Northington, Powell)

Fix a lattice Zd ⊂ Γ ⊂ Rd and f ∈ L2(Rd). Suppose that
T (f) is a frame for V (f). If V (f) is Γ-invariant then∫

Rd

|x| |f(x)|2dx =∞.
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Smoothness vs Decay

Consider the following for f ∈ L2(R).

f̂ ′(ξ) =

∫
Rd

f ′(x)e2πixξdx

= (2πiξ)

∫
Rd

f(x)e2πixξdx

(2πiξ)f̂(ξ).
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Fractional Sobolev Spaces

• For s > 0, the Sobolev space Hs(Rd) consists of all
measurable functions f defined on Rd such that
f ∈ L2(Rd) and

‖f‖Ḣs(Rd) =

(∫
Rd

|ξ|2s|f̂(ξ)|2dξ
)1/2

<∞. (1)
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Main Result

Theorem (Hardin, Northington, Powell)

Fix a lattice Zd ⊂ Γ ⊂ Rd and f ∈ L2(Rd). Suppose that
T (f) is a frame for V (f). If V (f) is Γ-invariant then∫

Rd

|x| |f(x)|2dx =∞.

In other words, the generator satisfies f̂ /∈ H1/2(Rd).
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• Given a lattice Γ ⊂ Rd and f ∈ L2(Rd), the Periodization
of f is defined as

PΓ(f)(x) =
∑
γ∈Γ

|f(x+ γ)|2.

• The following calculation shows that the inner products of
elements of T (f) are encoded in PZd(f̂)
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〈Tkf,Tk′f〉L2(Rd) = 〈e−2πiξ·kf̂ , e−2πiξ·k′ f̂〉L2(Rd)

=

∫
Rd

e−2πiξ·(k−k′)f̂(ξ)f̂(ξ)dξ

=
∑
l∈Zd

∫
[0,1]d

e−2πiξ·(k−k′)f̂(ξ − l)f̂(ξ − l)dξ

=

∫
[0,1]d

e−2πiξ·(k−k′)PZd(f̂)(ξ)dξ

= P̂Zd(f̂)(k − k′)
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Proposition (de Boor, DeVore, Ron)

Given f ∈ L2(Rd), T (f) = {Tkf : k ∈ Zd} forms a Riesz basis
for V (f) if and only if there exists s ≥ 1 such that

s−1 ≤ PZd(f̂)(ξ) ≤ s a.e. x ∈ [0, 1]d. (2)

Proposition (Bownik)

T (f) forms a frame for V (f) if and only if there exists s ≥ 1
such that for almost every x ∈ [0, 1]d,

s−1PZd(f̂)(ξ) ≤ (PZd(f̂)(ξ))2 ≤ sPZd(f̂)(ξ). (3)
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Theorem (Aldroubi, Cabrelli, Heil, Kornelson, Molter)

Let Zd < Γ be lattices in Rd. Let R ⊂ Zd be a collection of
representatives of the quotient Zd/Γ∗ so that

PZd(f̂)(ξ) =
∑
k∈R

PΓ∗(f̂)(x+ k), a.e. x ∈ Rd.

The space V (f) is Γ-invariant if and only if for almost every
x ∈ Rd, at most one of the terms in the right hand sum is
nonzero.
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Fourier coefficients

The Fourier coefficients of f ∈ L2([0, 1]d) are defined ∀ξ ∈ Zd,

f̂(ξ) =

∫
[0,1]d

f(x)e−2πix·ξ dx.

Also recall Parseval’s theorem∫
[0,1]d

|f(x)|2dx =
∑
ξ∈Zd

|f̂(ξ)|2 (4)
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Periodic Sobolev Space

Given s > 0, define the Sobolev space
Hs([0, 1]d) = {f ∈ L2([0, 1]d) : ‖f‖Ḣs([0,1]d) <∞}, where

‖f‖2
Ḣs([0,1]d)

=
∑
ξ∈Zd

|ξ|2s|f̂(ξ)|2.
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Theorem (Hardin, Northington, Powell)

Let 0 < s < 1. If f ∈ Hs(Rd) and PZd(f) is bounded, then

PZd(f) ∈ Hs([0, 1]d).
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Lemma (Rd Proof by Bourgain, Brezis, Nirenberg)

If g ∈ H1/2([0, 1]d) and for almost every x ∈ [0, 1]d, either
g(x) = 0, or g(x) ≥ C > 0 then either g(x) = 0 a.e. or
g(x) ≥ C a.e.
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• Assume f̂ ∈ H1/2(Rd).

• Then PZd(f̂), PΓ∗(f̂) ∈ H1/2([0, 1]d).

• Since T (f) forms a frame, PZd(f̂) is either zero, or
bounded away from zero.

• Since PZd(f̂)(ξ) =
∑

k∈R PΓ∗(f̂)(x+ k), we must have

that PΓ∗(f̂) is zero on a large set, and bounded away from
zero on a large set.

• This contradicts the previous lemma.
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