Estimating the Intrinsic Dimension of High-Dimensional Data Sets

Anna V. Little
Department of Mathematics, Jacksonville University

Collaborators: M. Maggioni (advisor, Duke University), L. Rosasco, Y. Jung, J. Lee, G. Chen

April 17, 2015
1st Annual Workshop on Data Sciences
Tennessee State University, Nashville
Problem: Given a high-dimensional point cloud consisting of samples from a \(k \)-dimensional data set corrupted by \(D \)-dimensional noise, with \(k \ll D \), we estimate the intrinsic dimension via a new multiscale algorithm that generalizes PCA.

Notation:
- \(n \rightarrow \) sample size
- \(D \rightarrow \) ambient dimension
- \(k \rightarrow \) intrinsic dimension

Dimensionality estimation is important in many applications in machine learning, including:

1. signal processing
2. discovering number of variables in linear models
3. molecular dynamics
4. genetics
5. financial data
Example: Database of Hand Images

PCA: Classic Technique for Dimension Estimation

When data is linear and noiseless, this method cannot fail.

Given: \(n \) mean-zero samples \(\{x_1, \ldots, x_n\} \) in \(\mathbb{R}^D \).

Define a (centered) data matrix and empirical covariance matrix:

\[
X_n = \frac{1}{\sqrt{n}} \begin{bmatrix} -x_1 \ldots -x_n \end{bmatrix} \quad \rightarrow \quad C_n := X_n^T X_n
\]

Computes the eigenvalues of \(C_n \): \(\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_D^2 \).

Intrinsic dimension = number of “large” eigenvalues.
Advantages:
1. Simple
2. Low sample-size requirements

Disadvantages:
1. Finite sample case is not completely understood; how many data points do we need for accurate results?
2. Noise confuses the dimensionality.
3. Fails on nonlinear data.

Example: S^5, $\sigma_i^2(\text{cov}(S^5)) = \frac{1}{6}$ for $1 \leq i \leq 6$
Solution: Multiscale PCA

Many of these issues can be addressed by computing the singular values *locally*:

(Local PCA first developed by Fukunaga and Olsen, 1971)

- Cover data set with a net of cells.
- Compute the singular values in each local cell.
- Repeat procedure with larger and larger nets.
Example:

- S^5 embedded in \mathbb{R}^{100}
- 1000 noisy samples ($\sigma = .05$)
Statement of Problem

1. Let $x_1, x_2, ..., x_n$ be n samples from a k-dimensional set \mathcal{M} embedded in \mathbb{R}^D.

2. Suppose data is corrupted by D-dimensional noise:

$$\tilde{x}_i = x_i + \sigma \eta_i$$

(e.g. $\eta \sim N(0, I_D)$)

$$\tilde{X}_n = \begin{bmatrix} -\tilde{x}_1 \\ -\tilde{x}_2 \\ \vdots \\ -\tilde{x}_n \end{bmatrix}$$

3. Goal: Estimate the dimensionality k w.h.p. from \tilde{X}_n.

Multiscale Notation:

Fix center z \[\begin{cases} X(r) = \mathcal{M} \cap B_z(r) \\ \tilde{X}_n(r) = \tilde{X}_n \cap B_{\tilde{z}}(r) \end{cases}\]
Algorithm to Estimate Dimensionality

Fix z. Let $\{\sigma_i^2(r)\}_{i=1}^{D}$ be the squared singular values of $\tilde{X}_n(r)$.

1. Estimate noise level; discard small scales where noise dominates.

2. Classify the σ_i^2 as follows:
 - linear growth in r: tangent plane squared singular value
 - quadratic growth in r: curvature squared singular value
 - no growth in r: noise squared singular value

3. Dimensionality at $z =$ number of tangent plane σ_i^2's
Recall sphere example:

- S^5 embedded in \mathbb{R}^{100}
- 1000 noisy samples ($\sigma = .05$)
Constraints to Good Range of Scale

- **Curvature** If r is chosen too large, the data will no longer appear linear, and PCA will overestimate the dimension.
 \rightarrow *upper bound on r*

- **Sample size** If r is chosen too small, one could fail to have $O(k \log k)$ samples in each local cell, and PCA will underestimate the dimension due to lack of samples.
 \rightarrow *lower bound on r*

- **Noise** If r is chosen too small relative to the size of the noise, the noise dominates and the k-dimensional structure is not detectable.
 \rightarrow *lower bound on r*
Main Idea:

For D large, if:

\[
\sigma \sqrt{D} \quad \lesssim \quad r \quad \lesssim \quad \frac{1}{\kappa} \quad \text{and} \quad n \quad \gtrsim \quad \frac{\text{vol}(\mathcal{M}) \cdot k \log k}{\text{vol}(X(r_-))} \quad \text{sampling}
\]

then $\Delta_k = \sigma_k^2(r) - \sigma_{k+1}^2(r)$ is the largest gap w.h.p.

Note:

1. One needs $\mathbb{E}[||\eta||^2_{\mathcal{R}D}] = O(1)$ (e.g. $\sigma = \sigma_0 D^{-\frac{1}{2}}$) for the algorithm to succeed w.h.p.

2. Consistency ($n \to +\infty$) follows trivially from our analysis with niceness assumptions on the noise and curvature.

3. The random matrix scaling limit ($n \to +\infty$, $D \to +\infty$, $\frac{n}{D} \to \gamma$) is a particular case of our analysis.
Idea of Proof:

1. Approximate the data set by a linear manifold $X^{\parallel}(r)$ and a normal correction $X^\perp(r)$.

 $\rightarrow ||\text{cov}(X^{\parallel}(r))|| \sim O\left(\frac{1}{k}r^2\right)$

 $\rightarrow ||\text{cov}(X^\perp(r))|| \sim O\left(\frac{\kappa^2}{k}r^4\right)$

2. Bound covariance matrix perturbations due to curvature, sampling, and noise.

 \rightarrow *Sampling Theorems for Covariance Matrices*

 \rightarrow *Random Matrix Theory*

 \rightarrow *Concentration of Measure in High Dimensions*

3. Conclude that $\max_i \Delta_i = \Delta_k$ w.h.p.
Comparison with other algorithms

Our algorithm:

- Requires $O(k \log k)$ points (under niceness assumptions on noise and curvature)
- Finite sample guarantees
- Only input: \tilde{X}_n
- Discovers correct scale using multiscale approach
Comparison with other algorithms

Our algorithm:

- Requires $O(k \log k)$ points (under niceness assumptions on noise and curvature)
- Finite sample guarantees
- Only input: \tilde{X}_n
- Discovers correct scale using multiscale approach

Other algorithms:

- Volume based (they require $O(2^k)$ points)
- Typically, no finite sample guarantees (at most consistent)
- Sensitive to noise
- Some involve many parameters
- Require user to specify correct scale (such as number of nearest neighbors to consider)
$S^5(n = 250, D = 100, \sigma)$
$S(n = 250, D = 100, \sigma)$
Future Research & Extensions

- Extending results to collections of manifolds of different dimensionalities
- Proving why competing algorithms perform poorly with noise
- Use results to improve dimensionality reduction algorithms
- Employing techniques in various applications
 - Molecular Dynamics
 - Genetics
 - Financial data
- Developing a similar multiscale spectral approach for estimating the number of clusters in a data set.
Thank you!
Questions?

Email: alittle2@ju.edu