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Problem: Given a high-dimensional point cloud consisting of
samples from a k-dimensional data set corrupted by D-dimensional
noise, with k � D, we estimate the intrinsic dimension via a new
multiscale algorithm that generalizes PCA.

Notation: n→ sample size
D → ambient dimension
k → intrinsic dimension

Dimensionality estimation is important in many applications in
machine learning, including:

1. signal processing

2. discovering number of variables in linear models

3. molecular dynamics

4. genetics

5. financial data
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Example: Database of Hand Images

W
�

rist rotation

F
in

ge
rs

 e
xt

en
si

on


Tenenbaum et al, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science 290 (5500),

Dec. 2000; image available at http://isomap.stanford.edu/
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PCA: Classic Technique for Dimension Estimation

When data is linear and noiseless, this method cannot fail.

Given: n mean-zero samples {x1, . . . , xn} in RD .

Define a (centered) data matrix and empirical covariance matrix:

Xn =
1√
n


−x1−
−x2−
. . . . .
−xn−

 → Cn := XT
n Xn

Computes the eigenvalues of Cn: σ21 ≥ σ22 ≥ · · · ≥ σ2D .

Intrinsic dimension = number of “large” eigenvalues.
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→ Advantages:

1. Simple

2. Low sample-size requirements

→ Disadvantages:

1. Finite sample case is not completely understood; how many
data points do we need for accurate results?

2. Noise confuses the dimensionality.

3. Fails on nonlinear data.

Example: S5, σ2i (cov(S5)) = 1
6 for 1 ≤ i ≤ 6



Introduction Multiscale approach Comparison Future Directions

Solution: Multiscale PCA

Many of these issues can be addressed by computing the singular
values locally:
(Local PCA first developed by Fukunaga and Olsen, 1971)

• Cover data set with a net of cells.

• Compute the singular values in each local cell.

• Repeat procedure with larger and larger nets.
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Example:

• S5 embedded in R100

• 1000 noisy samples (σ = .05)
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Statement of Problem

1. Let x1, x2, ..., xn be n samples from a k-dimensional set M
embedded in RD .

2. Suppose data is corrupted by D-dimensional noise:

x̃i = xi + σηi

(e.g. η ∼ N(0, ID))
X̃n =


−x̃1−
−x̃2−
. . . . .
−x̃n−


3. Goal: Estimate the dimensionality k w.h.p. from X̃n.

Multiscale Notation:

Fix center z −→

X (r) =M
⋂
Bz(r)

X̃n(r) = X̃n
⋂
Bz̃(r)
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Algorithm to Estimate Dimensionality

Fix z . Let {σ2i (r)}Di=1 be the squared singular values of X̃n(r).

1. Estimate noise level; discard small scales where noise
dominates.

2. Classify the σ2i as follows:
• linear growth in r : tangent plane squared singular value
• quadratic growth in r : curvature squared singular value
• no growth in r : noise squared singular value

3. Dimensionality at z = number of tangent plane σ2i ’s
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Recall sphere example:

• S5 embedded in R100

• 1000 noisy samples (σ = .05)
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Constraints to Good Range of Scale

• Curvature If r is chosen too large, the data will no longer
appear linear, and PCA will overestimate the dimension.
−→ upper bound on r

• Sample size If r is chosen too small, one could fail to have
O(k log k) samples in each local cell, and PCA will
underestimate the dimension due to lack of samples.
−→ lower bound on r

• Noise If r is chosen too small relative to the size of the noise,
the noise dominates and the k-dimensional structure is not
detectable.
−→ lower bound on r
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Main Idea:

For D large, if:

σ
√
D︸ ︷︷ ︸

noise

. r .
1

κ︸︷︷︸
curvature

and n &
vol(M) k log k

vol(X (r−))︸ ︷︷ ︸
sampling

then ∆k = σ2k(r)− σ2k+1(r) is the largest gap w.h.p.

Note:

1. One needs E[||η||2RD ] = O(1) (e.g. σ = σ0D
− 1

2 ) for the
algorithm to succeed w.h.p.

2. Consistency (n→ +∞) follows trivially from our analysis with
niceness assumptions on the noise and curvature.

3. The random matrix scaling limit (n→ +∞, D → +∞,
n
D → γ) is a particular case of our analysis.
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Idea of Proof:

1. Approximate the data set by a linear manifold X ||(r) and a
normal correction X⊥(r).
−→ ||cov(X ||(r))|| ∼ O( 1

k r
2)

−→ ||cov(X⊥(r))|| ∼ O(κ
2

k r4)

2. Bound covariance matrix perturbations due to curvature,
sampling, and noise.
−→ Sampling Theorems for Covariance Matrices
−→ Random Matrix Theory
−→ Concentration of Measure in High Dimensions

3. Conclude that maxi ∆i = ∆k w.h.p.
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Comparison with other algorithms

Our algorithm:

• Requires O(k log k)
points (under niceness
assumptions on noise and
curvature)

• Finite sample guarantees

• Only input: X̃n

• Discovers correct scale
using multiscale approach

Other algorithms:

• Volume based (they require O(2k)
points)

• Typically, no finite sample
guarantees
(at most consistent)

• Sensitive to noise

• Some involve many parameters

• Require user to specify correct scale
(such as number of nearest
neighors to consider)
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S5(n = 250,D = 100, σ)
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S(n = 250,D = 100, σ)
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Future Research & Extensions

• Extending results to collections of manifolds of different
dimensionalities

• Proving why competing algorithms perform poorly with noise

• Use results to improve dimensionality reduction algorithms

• Employing techniques in various applications
• Molecular Dynamics
• Genetics
• Financial data

• Developing a similar multiscale spectral approach for
estimating the number of clusters in a data set.
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Thank you!
Questions?

1Email: alittle2@ju.edu
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