T HU vision lab

René Vidal
Center for Imaging Science
Johns Hopkins University

'HE DEPARTMENT OF BIOMEDICAL ENGINEERING @v[ VGING

The Whitaker Institute at Johns Hopkins



High-Dimensional Data

* In many areas, we deal with high-dimensional data
— Computer vision
— Medical imaging
— Medical robotics
— Signal processing
— Bioinformatics

The Language of Surgery

Modeling the skills of human expert surgeons

to train a new generation of students. (more)



High-Dimensional Data in Computer Vision

http://blog.1000memories.com/94-number-of-photos-ever-taken-digital-and-analog-in-shoebox

NUMBER OF PHOTOS
TAKEN EACH YEAR

. Al photos

[_ Analeg photos RS5H e /am

1826 1530 1960 1570 1980 1990 2000 2011




High-Dimensional Data in Computer Vision
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http://tech.firstpost.com/news-analysis/now-upload-share-1-8-billion-photos-everyday-meeker-report-224688.html




High-Dimensional Data in Computer Vision

facebook

— 140 billion images — 120 million videos
— 350 million new photos/day — 300 hours of video/minute

NIy
CISCO.

— 3.8 trillion of photographs — 90% of the internet traffic will
— 10% in the past 12 months be video by the end of 2017
hitp://www buzzfeed.comhunterschwarzihow-many-photos-have-been-taken-ever-bzgv . &
i



Low-Dimensional Manifolds

« Face clustering and classification * Lossy image representation
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Motion segmentatlon « DT segmentation
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Two Fundamental Tasks

» Clustering of data in low-dimensional manifolds




Talk Outline

* Introduction to Subspace Clustering

* Generalized Principal Component Analysis (GPCA)

— Polynomial fitting and factorization

« Sparse Subspace Clustering (SSC)

— Matrix of coefficients is sparse

* Low Rank Subspace Clustering (LRSC)

— Matrix of coefficients is low-rank

* Applications:
— Face clustering
— Motion/video segmentation
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA). CVPR 2003, CVPR 2004, PAMI 2005.

E. Elhamifar and R. Vidal. Sparse Subspace Clustering (SSC). CVPR 2009, ICASSP 2010, PAMI 2013.
P. Favaro, A. Ravichandran and R. Vidal. Low Rank Subspace Clustering (LRSC). CVPR 2011.
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Principal Component Analysis (PCA)

« Given a set of points lying in one subspace, identify
— Geometric PCA: find a subspace S passing through them
— Statistical PCA: find projection directions that maximize the variance

o Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36)
UEVT: [2131 ro - mN} ERDXN

* Applications:

— Signal/image processing, computer vision (eigenfaces), machine
learning, genomics, neuroscience (multi-channel neural recordings)




Subspace Clustering Problem

« Given a set of points lying in multiple subspaces, identify
— The number of subspaces and their dimensions
— A basis for each subspace
— The segmentation of the data points

* Challenges
— Model selection
— Nonconvex
— Combinatorial

* More challenges
— Noise
— Outliers
— Missing entries




Even more challenges
— Angles between subspaces are small

Subspace Clustering Problem: Challenges

— Nearby points are in different subspaces

— Hopkins 155
—— Extended YaleB
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Prior Work: lterative-Probabilistic Methods

* Approach
— Given segmentation, estimate subspaces
— Given subspaces, segment the data
— lterate till convergence

* Representative methods

— K-subspaces (Bradley-Mangasarian '00, Kambhatla-Leen 94,
Tseng’00, Agarwal-Mustafa '04, Zhang et al. ’09, Aldroubi et al. '09)

— Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss '04,
Kanatani ’'04, Archambeau et al. ‘08, Chen ’11)

Advantages Disadvantages / Open Problems
Simple, intuitive Known number of subspaces and dimensions

Missing data Sensitive to initialization and outliers




Prior Work: Algebraic-Geometric Methods

* Approach

— Number of subspaces = degree of polynomial
— Subspaces = factors of polynomial

* Representative methods

— Factorization (Boult-Brown’91, Costeira-Kanade’98, Gear’98,
Kanatani et al.’01, Wu et al.’01, Sekmen’13)

— GPCA (Shizawa-Maze '91, Vidal et al. '03 *04 05, Huang et al. '05,
Yang et al. ’05, Derksen 07, Ma et al. ’08, Ozay et al. “10)

Advantages Disadvantages / Open Problems

Closed form Complexity

Arbitrary dimensions Sensitive to noise, outliers, missing entries




Prior Work: Spectral-Clustering Methods

* Approach
— Data points = graph nodes
— Pairwise similarity = edge weights
— Segmentation = graph cut

* Representative methods
— Local (Zelnik-Manor ’03, Yan-Pollefeys 06, Fan-Wu '06, Goh-Vidal ‘07, Sekmen’12)
— Global (Govindu '05, Agarwal et al. '05, Chen-Lerman ’08, Lauer-Schnorr ’09, Zhang et al. ’10)

Advantages Disadvantages / Open Problems

Efficient Known number of subspaces and dimensions

Robust Global methods are complex




Prior Work: Sparse and Low-Rank Methods

* Approach
— Data are self-expressive
— Global affinity by convex optimization

* Representative methods

— Sparse Subspace Clustering (SSC)
(Elhamifar-Vidal '09 '10 ‘13, Candes '12 ‘13)

— Low-Rank Subspace Clustering (LRSC)
(Liu et al. 10 “13, Favaro-Vidal '11 "13)

— Sparse + Low-Rank (wang ‘13)

Advantages Disadvantages / Open Problems

Efficient, Convex Low-dimensional subspaces

Robust Missing entries




Prior Work on Subspace Clustering
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GPCA: Representing One Subspace

* One plane b
bTw=b1x1+b2332—|—53333=O /loo oo%
b

e One line

b{m — blasl T 52332 535133 =0

bgw — b45131 T b5£C2 b6£C3 =0

« One subspace can be represented with

— Set of linear equations T
— Set of polynomials of degree 1 S={x: B 'z =0}

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04.
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.




GPCA: Representing a Union of Subspaces

* One subspace b

bTw — blzcl bQZUQ b3ZC3 =0

 Two subspaces

(b{w = 0) |or (bgw = 0)

l

p2(x) = (b{2)(bhz) = 0]

* A union of n subspaces can be represented with a set of
homogeneous polynomials of degree n

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003.
Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04.
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.




GPCA: Representing n Subspaces

 Two planes (bipw = 0) |or (bgw = 0)

l

| p2(x) = (b]z)(bbz) = 0|

* One plane and one line
— Plane: S1 ={x:blz =0}

7
— Line: So ={x : b{a: = bga} = 0} t

SlUSQI{LIJZ(bTsz) or

De Morgan’s rule l

51US = {z :|(bT @) (b] ) = 0Olfand

(") (bhx) = 0}

homogeneous polynomials of degree n

* A union of n subspaces can be represented with a set of

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04.

Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.
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GPCA: Fitting Polynomials to Data Points

* Polynomials are linear in their coefficients

(b, )(by ) = c122 + com1To + c322 = ¢ vy (x) =0

« Coefficients can be computed linearly from the nullspace of
the embedded data matrix - —
— Solve using least squares n (wl)
— N = #data points Lyc= c=0
n(@n)

 Number of subspaces can be found from rank of embedded
data matrix

n = min{s : L; drops rank}

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003.
Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04.
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.




GPCA Algorithm by Polynomial Factorization

« Basis for each subspace c € RM»
clv,(x) = (ble) e (bfw) ﬂ\
bl b2 - bn

* Polynomial Factorization Algorithm
— Find roots of polynomial of degree n in one variable
— Solve D-2 linear systems in n variables

* Problems
— Computing roots may be sensitive to noise
— The estimated polynomial may not perfectly factor with noisy data

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003.




GPCA Algorithm Polynomial Differentiation

—7 — bz — Dpn(w)|w:yi Y; € S,,;

bo ~ Dpn(y>)

b1 ~ Dpn(yq1)

\ blex =0

« To learn a mixture of subspaces we just need one positive
example per class

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04.
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.




GPCA Algorithm Polynomial Differentiation

« With noise and outliers
— Polynomials may not be a perfect union of subspaces

bo ~ Dpn(yQ)

b1 ~ Dpn(yl)

— Normals can estimated correctly by choosing points optimally
« Distance to closest subspace without knowing segmentation?

r— Bl — [pn ()] | r — 32
|z — & \l”Dpn(m)”.o(n %)

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04.
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005..




GPCA: Algorithm for Hyperplane Clustering

« Coefficients of the polynomial can be computed from null

space of embedded data matrix
— Solve using least squares
— N = #data points

an =

-Vn(ml)T
; c=20

_Vn(w.N)T i

 Number of subspaces can be computed from the rank of

embedded data matrix

n =min{i: rank(L;)=M;—1}

* Normal to the subspaces p, p, ...b,

from the derivatives of the polynomial

can be computed

c € RMn

by b> ... by

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04.
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.




The Society Raffles

©December 7, 1905

American Mutoscope
& Biograph Company




Temporal Video Segmentation by GPCA

« Empty living room « Middle-aged man checks the

 Middle-aged man enters time, rises and leaves

« \Woman enters * Woman walks him to the door

»  Young man enters, introduces the * VWoman returns to her seat
woman and leaves  Woman misses her tiara

« Middle-aged man flirts with  Woman searches her tiara
woman and steals her tiara «  Woman sits and dismays

21— | | [ I [ | | | | | |
15— —!
Woman Worman Woman
1= Empty living room Middle-aged man firts with woman and steals hertiara lo':{e':g:at h:ﬁi‘:: ;e:;:: —
05 Young ]
man
0 leaves ]
Middle-aged man
05— checks the time —
I = —
15— Young NL_ | = S p
Middle-aged man enters man - Middle-aged man rises and leaves Wornan sits
) and crosses living room enters  Youngmen inlroduces woman while wo:\an walks him to the door and dismays
_ | | || | || | | | | | | | T

0 90 185 358382 440 464 650674  T20 1085 1162 1265 1360 1427 1478 1550

Fig. 5. Temporal segmentation of a scene from the movie The society raffles. The top row shows several key frames from the
scene displaying different events. The bottom row shows the temporal evolution of the parameter ¢; as a function of time.
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Sparse Subspace Clustering: spectral Clustering

« Spectral clustering
— Represent data points as nodes in graph G
— Connect nodes 7 and 7 with weight C;;
— Infer clusters from Laplacian of G

¥

* How to define a good affinity matrix C
for subspaces?
— points in the same subspace: ¢;; # 0
— points in different subspaces: ¢;; = 0




Sparse Subspace Clustering: spectral Clustering

« Spectral curvature clustering (SCC) (Chen-Lerman '08)
— Define multiway similarity as normalized volume of d+1 points

i

« Local subspace affinity (LSA) (Yan-Pollefeys '06)

— Use the angles between locally fitted subspaces as similarity




Sparse Subspace Clustering: intuition

« Data in a union of subspaces are self-expressive
N

Y, :chiyj — Y, =Yc, — Y=YC
j=1
« Union of subspaces admits subspace-sparse representation

CF!

® o o000 00 veo o &

* Under what conditions on the subspaces and the data
— LO = subspace sparse?

— L1 = subspace sparse? 1 : min lcill1 st y; =Yei, ¢y =0

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009.
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.
E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.




Sparse Subspace Clustering: Noiseless Data

« Theorem 1: P: recovers a subspace-sparse representation if
— Subspaces are independent: Ss

dim( é Si) = i dim(.5;)

P; :min ¢l st. y,=Ye;, ¢; =0

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009.




Sparse Subspace Clustering: Noiseless Data

« Theorem 2: i recovers a subspace-sparse representation if
— Subspaces are disjoint: S; N S; = {0} 53\

— Subspaces are sufficiently well separated e S
and data are sufficiently well distributed /

P

max og4.(Y;) > \/d; maxcos(6;.
rank(?i):di dZ( ) J#Z ( ])

« 0;; is the smallest subspace angle between subspaces i and j
— subspace angles decrease == harder recovery

o 04,(Y:) is the smallest singular value in each subspace
— data closer to a degenerate subspace == harder recovery

P; :min ¢l st. y,=Ye;, ¢; =0

E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.




Sparse Subspace Clustering: Noiseless Data

« Theorem 3:
— n d-dimensional subspaces chosen independently, uniformly at random
— rd + 1 points per subspace chosen independently, uniformly at random
— P1 recovers a subspace-sparse representation with high probability if

2(r)1
c’(r)logp

d
= 12log N

P; :min ¢l st. y,=Ye;, ¢; =0




Sparse Subspace Clustering: pata with Outliers

« Assumptions
— n d-dimensional subspaces chosen independently, uniformly at random
— rd + 1 inliers per subspace chosen independently, uniformly at random
— Noutiiers outliers chosen independently and uniformly at random
— Declare point i as an outlier if the solution to P1 satisfies

lesllr > A(v)VD

 Theorem 4:
— P correctly detects all outliers with high probability if

1 vD
cv D
Noutliers < 56 — Ninliers

— P1 does not detect any inlier as an outlier if

P; :min ¢l st. y,=Ye;, ¢; =0

A geometric analysis of subspace clustering with outliers. M. Soltanolkotabi and E. J. Candes. Annals of Statistics 40(4), 2195-2238.




Sparse Subspace Clustering: corrupted Data

« When the data are corrupted with noise y =y +e
min|lc;||1 + plly: — Yeill2

 When the data have missing entries
— Let I C{1,...,D}be the indices of the missing entriesin y € RP

— Form y € RP~lland v € RP-HIXN by eliminating rows of Y and
Y indexed by I, and solve the same optimization problems

 When the data are corrupted with outlying entries

— Lety=Yc+e= [Y ]D] [CJ be corrupted by a vector e ¢ RP
e

T :
— The vector [CT eT} is still sparse and can be recovered from

win [ €[l + llg = [¥ 1]

S. Rao, R. Tron, R. Vidal and Y. Ma. Robust Motion Segmentation, CVPR 2008, PAMI 2009.
E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009.
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.




Sparse Subspace Clustering: Aigorithm

 Represent data points as nodes in graph G /' ’ ’ . /

« Find the sparse coefficient vectors{c;};.,

min||cgl|s + plly: — Yeill2 o

« Connect nodes ¢ and; by an edge with
weight

cij| + |cji

« Spectral clustering: apply K-means to the
smallest eigenvectors of the Laplacian of G
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Sparse Subspace Clustering: spectral Clustering

« Spectral clustering
— Represent data points as nodes in graph G
— Connect nodes 7 and 7 with weight C;;
— Infer clusters from Laplacian of G

¥

* How to define a good affinity matrix C
for subspaces?
— points in the same subspace: ¢;; # 0
— points in different subspaces: ¢;; = 0




Sparse Subspace Clustering: intuition

« Data in a union of subspaces are self-expressive
N

Y, :chiyj — Y, =Yc, — Y=YC
j=1
* Union of subspaces admits subspace-sparse representation

S3

3

« Sparse Subspace Clustering
P1 : min ||C7,||1 S.t. Y, = YCi, Cii — 0

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009.
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.
E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.




Subspace Clustering by Matrix Factorization

. Data from i-th subspace can be factorized as Y; = U;V,'

YT'=Y1,Y5,....Y,]| =|U1,Us,...,U,]

« Segmentation of the data can be obtained from

— Leading singular vector of Y = USV " (Boult and Brown '91)
— Shape interaction matrix ~ C = VYV (Costeira & Kanade '95, Gear '94)

« (5 =0 if points i and j lie in two
independent subspaces (Kanatani et al. '01, Vidal et al. '08)

Object 1 |

P> Object 2



Low Rank Subspace Clustering

« Data in a union of subspaces are self-expressive

N
yz':zcjiyj — ijYCi — Y =YC
j=1

— Cis sparse
— Cis low-rank

 Low Rank Subspace Clustering (noiseless case)

Y =uUxy’

min |C]l« st. Y=YC = C— YT

« Low Rank Subspace Clustering (noisy case)

° 7- 1
min [Cf. +SIY —=YClE: = C=v{I--x2)7
.
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Experiments on 3D Motion Segmentation

* Motion segmentation problem

— Input: multiple images of a scene with multiple rigid-body motions
— Output: number of motions, motion model parameters, segmentation

. Ceee 32 200 oy 0 _be ey, 88000
s RIS
'..‘ ‘“. :. et :: : g.. L ‘.... w :. L L :: : ...

¢ . a Tas 4 e o® g

. % : . = .:“ .. .3 v %2 .. Q:.. .. a®
:. o .:o ::.0: % B A :..:. ¥ zi!: % T A

¢ M0t|0n Of a r|g|d'b0dy 4D SUbSpace (Boult and Brown '91, Tomasi and Kanade '92)

— P= #points _:1:11 e 5131P- -Al-
— F = #frames : " : = : [Xl XP}
Tr1 LFp
2FV><P

Vidal et al., ECCV02, IJCVO06; Vidal, Ma and Sastry CVPR03, PAMI05; Vidal and Sastry CVPRO3;
Vidal and Ma ECCV04, JMIVO06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPRO07; Li et al.
CVPRO07; Goh and Vidal CVPRO07; Vidal and Hartley, PAMIO8; Vidal, Tron and Hartley [JCV08;
Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09, TPAMI 13; Vidal SPM11; Tsakiris ‘15




Experiments on 3D Motion Segmentation

« Misclassification rates on Hopkins 155 database

R. Tron and R. Vidal. A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms. CVPR 2007.

—O— FSASC (1.18%)
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- = = SASC-A (12.2%)
o4l | =% SSC-raw (2.18%)
E —— SSC-proj (5.83%)
%0-3_ —<%— LRR (5.05%) . __.-"
£ —— LRR-H (2.51%)
§ LT LRsC (4.20%) .-
% LSR (4.54%) _ -
y —<+— LSR-H (2.70%)

T A S5-3I <
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» LD D-SR-8

A Z5 A AP ARy Llends L i i AT T A1 W W W L W
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sequence index

Vidal et al., ECCV02, IJCVO06; Vidal, Ma and Sastry CVPR03, PAMI05; Vidal and Sastry CVPRO3;
Vidal and Ma ECCV04, JMIVO06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPRO07; Li et al.
CVPRO07; Goh and Vidal CVPRO07; Vidal and Hartley, PAMIO8; Vidal, Tron and Hartley [JCV08;
Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09, TPAMI 13; Vidal SPM11; Tsakiris ‘15




Experiments on Video Segmentation

* Model each video segment as a low-dimensional subspace
* Cluster video frames into multiple segments

L'
[=] ] E (=] ==

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 20 40 60 80 100 120 140 160 180

« Advantages
— SSC easily detects sharp transitions in the video
— SSC can handle camera motion and scene variations



Experiments on Video Segmentation

 Model each video segment as a low-dimensional subspace
* Cluster video frames into multiple segments

1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 0 20 40 60 80 100 120

« Advantages
— SSC easily detects sharp transitions in the video
— SSC can handle camera motion and scene variations




Experiments on Face Clustering

« Faces under varying illumination 7

— 9D subspace 60"

« Extended Yale B dataset <50
— 38 subjects §D4o

— 64 images per subject 590

O 20

e Clustering error
— SSC < 2.0% error for 2 subjects
— SSC < 11.0% error for 10 subjects

|<LRR

- SSC
-~ LRSC
- | RR-H

—-—SCC

E. Elhamifar and R. Vidal, Sparse Subspace Clustering: Algorithm, Theory, and Applications, TPAMI13.




Conclusions

 Many problems in computer vision can be posed as subspace
clustering and classification problems
— Spatial and temporal video segmentation
— Face clustering under varying illumination
— Face classification

* These problems can be solved using
— Generalized Principal Component Analysis (GPCA)

— Sparse Subspace Clustering (SSC)
— Low Rank Subspace Clustering (LRSC)

« This algorithms is provably correct when
— Subspaces are sufficiently separated
— Data are well distributed within each subspace




What's Next

° Blg Data (Peng ’13, Dyer 13, You '15)

GPCA SSC OMP ?

Dimension of the data 10 10,000 10,000 1M

Number of data points 1000 10,000 100,000 1M ongYou

° MISSIng Data: (Grubber '04, Eriksson ’12, Balzano '12, Pimentel ‘14, Candes ’14, Yang'15)

Matrix of corrupted observations Underlying low-rank matrix Sparse error matrix

Congyuan
Yang
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Problem Statement

 Given a set of points {vy1,-..,Yx} selecta subset of k < N
points that efficiently represent the whole data set

— Summarize/visualize text/images/videos = — Reduce computational time
STORY HIGHLIGHTS Editor's note: Peter Bergen is CNN's national security analyst, an d me mo ry req uire m e ntS
- John Brennan s upfora  the author of "Manhunt: The Ten-Year Search for bin Laden -- of classification algorithms
confirmation hearing before  From 9/11 to Abbottabad,” and a director at the New America
the Senate on Thursday Foundation.

* The nomnee for CIA director

m&zfmcmﬁ (CNN) -- When Vice President Joe Biden and Defense Secretary

policies Robert Gates advised President Barack Obama in late April 2011
- Peter Bergen says that sending a Navy SEAL team into Pakistan to capture or Kill
Brennan’'s been key inthe  Osama bin Laden was not worth the various risks that this
frone programana n I BT operation entailed, John Brennan, the president's top
- Bergen: Brennan supported counterterrorism adviser, urged the president to authorize the raid.
the raid while Biden and
Gates argued against it It's that kind of call that has made Brennan the president's go-to
guy since the beginning of Obama's first term on all matters
related to terrorism and has also thrust him into a broader

policymaking role in the Middle East and in South Asia.

From his windowless office deep in the bowels of the West Wing a
few steps from the Situation Room, Brennan has been at the

— Produce a clustering of the data




State of the Art

 Methods based on low-rank representations

— Rank revealing QR [Chan ‘87, Gu-Eisenstat ‘96] o o0
— NNMF [Esser et al. ‘12, Bittorf et al. “12] o ,:: A 0“0
— CUR [Mahoney-Drineas ‘09] S kL
— Randomized/greedy algorithms [Tropp ‘09, Boutsidis et al. 09, Balzano '10]

* Methods based on clustering % o s %
— Central clustering: k-medoids [Kaufman 87] °0  &.° 8, 030
— Set cover optimization [Bien-Tibshirani "11] o @ ® ‘,: °
— Affinity propagation [Frey-Duek 06,'07; Givoni et al. ‘11] ®° g e o

* Challenges
— Depend on initialization (local minima), return approximate solutions
— Require prior knowledge about the dimensions, number of groups, etc.




Contributions

* Goals
— Develop efficient (convex) algorithms
— Analyze the geometry of solution
— Have theoretical guarantees

« Part |: Sparse Representation of the Data [1]
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[1] E. Elhamifar, G. Sapiro, and R. Vidal. See All by Looking at A Few: Sparse Modeling for Finding Representative Objects. CVPR 2012.
[2] E. Elhamifar, G. Sapiro, and R. Vidal. Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. NIPS 2012.




Exemplars from Linear Data Relationships

* |nput: set of data points Y = [ylj... ,yN] c RMXN
* Qutput: set of exemplars U = [yz.l, . ’yik] c Rmxk

« Classical PCA: find U € R™** and C € R**¥ such that
- min [[Y — UC|% suchthat U'U = I,

— columns of U need not coincide with the data

* QOur approach:
— Choose the smallest number of columns k such that
- in”

[yla"' 7yN} ~ [yz'17°” 7yzk]

clk

E. Elhamifar, G. Sapiro, and R. Vidal. See All by Looking at A Few: Sparse Modeling for Finding Representative Objects. CVPR 2012.




Exemplars from Linear Data Relationships

* Use the entire data matrix as a dictionary and let the
nonzero rows indicate the exemplars

[yla”' 7yN] ~ [yla”' 7yN]

e Choose smallest kK => minimize number of nonzero rows of C
[Chen-Huo'05, Tropp'06, Jenatton-Audibert-Bach'11]

N N
min[|Cllo.g = > I(lle'lly #0) = min[Cllg = > lle'll
i=1 1=1

* Find exemplars by solving the convex problem

min = [|Clli, st ¥V =YC, 1'"c=1" (¢>1)

E. Elhamifar, G. Sapiro, and R. Vidal. See All by Looking at A Few: Sparse Modeling for Finding Representative Objects. CVPR 2012.




Theoretical Guarantees

min ||C]y, st. Y=YC, 1'C=1"

C
* Theorem 1: y‘is
— H = convex hull of data Y K ‘; -~
— k = number of vertices of H ;@ "N Tl
— Data lie in an affine subspace of dim k-1 o @ 0_‘_ -9 Yi,
— k nonzero rows of C* = k vertices of H o---~
Ik A k yil
C*=T A e 0,1
[O O] < [0,1)
00
 Theorem 2: o S,

— Data lie in union of independent subspaces
— Nonzero rows of C* include at least o S
dim(Si) + 1 exemplars for subspace Si o ° 2
3

E. Elhamifar, G. Sapiro, and R. Vidal. See All by Looking at A Few: Sparse Modeling for Finding Representative Objects. CVPR 2012.




Beyond Linear Relationships

 Linear relationship model can be restrictive

M

« Consider dissimilarities between pairs of data points

_le_

D4

g7

dn1

d12

d o

din

dn N

GRNXN

— d;; = cost of encoding point Y, with exemplar Y,
— Euclidean/geodesic distance, KL divergence, etc.
— Dissimilarities need not come from a metric

E. Elhamifar, G. Sapiro, and R. Vidal. Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. NIPS 2012.




Exemplars from Pairwise Dissimilarities

« Letz; € {0,1} denote whether y; is chosen to encode ¥,

» The total encoding cost is given by tr(D'Z) =  z;d;;
]
e Choose smallest kK => minimize number of nonzero rows of Z
[Chen-Huo'05, Tropp'06, Jenatton-Audibert-Bach'11]
N
L 7
l,g = Z 12*]l4
1—=1

* Find exemplars by solving the convex problem

N
min | Zlo, = 3 1(1#], #0) = min||Z
1=1

mZin tr(D'Z)+ M| Z||1, st. Z>0, 1'Z=1"

E. Elhamifar, G. Sapiro, and R. Vidal. Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. NIPS 2012.




Theoretical Guarantees

min tr(D'Z)+ M| Z||1, st. Z>0, 1'Z=1"

 Theorem 1: If A is too big, only one exemplar is chosen; and
if A is too small, each point chooses itself as an exemplar

~ A > Amaxg(D) = Z =¢€,1' where /(= arg min 1'd’

— )\S)\min,q(D) — /=1

e Theorem 2:if A < Ac(D)andthedata o o
partitions into n clusters, the optimal Z ®°® & °
is such that data points within each ° ° » %o o
cluster select exemplars " % o o
from that cluster only

E. Elhamifar, G. Sapiro, and R. Vidal. Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. NIPS 2012.

vV IN d;, — d,||? d; — dy||1 . . . . . .
Amax,2 = max =~ - IHT(Z 4 clzlj)’ o = mex w, . — mjln(lg;gl dij — djj), A= Ly (Igél? Iin dyry — e dirgr)




Experiments on Synthetic Data

Representatives for A =0.002 hma

Representatives for A =0.1 km
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Number of Exemplars/Cluster vs Lambda

q=2,A/8=11 q=co,A/5=1.1
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Applications: Classification with Exemplars

« Classification Results on the USPS digit database using 25
representatives of the 1,000 training samples in each class
NN NS SRC | SVM
Rand 76.4% | 84.9% | 83.5% | 98.6%
Kmedoids | 86.0% | 89.7% | 89.6% | 99.2%
RRQR | 59.1% | 81.3% | 78.3% | 94.3%
SMRS 83.4% | 93.8% | 91.7% | 99.7%
All Data | 96.2% | 96.4% | 98.9% | 99.7%
= 2 4 &)
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E 2 N
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Applications: Exemplar Frames in a Video

 Empty living room
* Middle-aged man enters
 Woman enters

* Young man enters, introduces the
woman and leaves

« Middle-aged man flirts with
woman and steals her tiara

Middle-aged man checks the
time, rises and leaves

Woman walks him to the door
Woman returns to her seat
Woman misses her tiara
Woman searches her tiara
Woman sits and dismays




Applications: Exempla{ﬁragmem a Vp 0
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Applications: Summarizing our NIPS paper!

— Given pairwise dissimilarities between data points, we consider the
problem of finding a subset of data points, called representatives or
exemplars, that can efficiently describe the data collection.

— We obtain the range of the regularization parameter for which the
solution of the proposed optimization program changes from selecting
one representative for all data points to selecting all data points as
representatives.

— When there is a clustering of data points, defined based on their
dissimilarities, we show that, for a suitable range of the regularization
parameter, the algorithm finds representatives from each cluster.

— As the results show, the classification performance using the
representatives found by our proposed algorithm is close to that of
using all the training samples.

ccccccccc
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