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INTRODUCTION 

 Bioinformatics develops 
computational theories and 
algorithms to analyze 
biological structures 

 Algorithms, databases, 
artificial intelligence, 
modeling and simulation, 
and more 



 Sequence Alignment and Analysis  
    Comparing pairs or groups of DNA sequences to find 

similarities 

 Why is it important? 
           It can be used to  find functional, structural, or     
           evolutionary relationships between the sequences 

 

 

Sequence Alignment 



Problem Statement 

 Sequence alignment is critical in Bioinformatics 
for finding functional, structural, or evolutionary 
relationships.  

 Aligning hundreds or thousands pairs/groups of 
DNA sequences is time costing.  

 High performance computing (parallel 
computing) should be introduced into sequence 
alignment.  



Project Goal and Objectives 

 To design and implement parallel 
algorithms for efficiently finding regions of 
similarities in DNA and proteins 

 Implementing a global alignment algorithm 

 Implementing a local alignment algorithm 

 Converting those algorithms so that they can 
be implemented in parallel 

To speed up the whole alignment process 

 

 



 Given a DNA/ Protein sequence, find the 
similarities/relationships in the same 
group of DNA/Proteins 

 Using global and local alignment techniques 

 Develop strategies to convert those 
techniques into parallel implementation 

 Compare non-parallel and parallel 
performances 

 

Functional Requirements 



 NCBI database will be used to extract DNA 
and protein sequences 

 NCBI is widely accepted and used in 
bioinformatics community 

 The algorithms will work with at least 80% 
accuracy 

 .NET environment will be utilized 

 It provides a parallel processing library and 
the team is familiar with .NET 

 

Non-Functional Requirements 



System Architecture 



 Needleman-Wunsh Algorithm 

 It produces an optimal alignment of two 
protein or DNA sequences allowing for the 
introduction of gaps 

 The Needleman-Wunsh algorithm aligns 
whole sequences (that is why it is called 
global alignment) 

 

 

Global Alignment  



Global Alignment (cont.)  

SCORING SCHEME can be  A C T G 

A 1 -1 -1 -1 

C -1 1 -1 -1 

T -1 -1 1 -1 

G -1 -1 -1 1 

Match Score = +1 

Mismatch Score = -1 

Gap penalty = -1 

The score of any cell C(i, j) is the maximum of: 

 scorediag = C(i-1, j-1) + S(i, j) 

 scoreup = C(i-1, j) + g 

 scoreleft = C(i, j-1) + g 

 where S(i, j) is the substitution score for letters i and j, and g is the gap penalty 



 Scoring 

 Example (g = -1) 

 

Global Alignment (cont.)  

  

 The calculation for the cell C(2, 2): 

 scorediag = C(i-1, j-1) + S(I, j) = 0 + -1 = -1 

 scoreup = C(i-1, j) + g = -1 + -1 = -2 

 scoreleft = C(i, j-1) + g = -1 + -1 = -2 

 T C G 

0 -1 -2 -3 

A -1 -1 -2 -3 

T -2 0 -1 -2 

C -3 -1 1 0 

G -4 -2 0 2 

 *  T   C   G 

 A  T   C   G 

Globally  

aligned 



 Smith-Waterman Algorithm 

 Smith-Waterman  determines the optimal 
alignment of subsequences from a pair of 
sequences (that is why it is called as local 
alignment) . 

 For align subsequences there is no penalty 
when starting or stopping the alignment in 
the middle of the sequences.  

 

Local Alignment 



Local Alignment (cont.) 

Match Score = +1 

Mismatch Score = -1 

Gap penalty = -1 

The score of any cell C(i, j) is the maximum of: 

 scorediag = C(i-1, j-1) + S(i, j) 

 scoreup = C(i-1, j) + g 

 scoreleft = C(i, j-1) + g 

 where S(i, j) is the substitution score for letters i and j, and g is the gap penalty 

A C T G 

A 1 -1 -1 -1 

C -1 1 -1 -1 

T -1 -1 2 1 

G -1 -1 1 3 

SCORING SCHEME can be  



 Scoring 

 Example (g = -1) 

 

Local Alignment (cont.)  

 The scores are 
compared to zero, so 
that negative values 
are dismissed 

  The trace-back 
method is then 
applied starting at the 
maximum score and 
tracing back to a zero.   

 

C C G 

0 0 0 0 

A 0 0 0 0 

T 0 0 0 0 

C 0 1 1 0 

G 0 0 0 2 

    C   C   G 

 A  T   C   G 

Locally  

aligned 



Parallel Strategies 
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When calculate score matrix S, 

the value of S(i,j) depends only  
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Evaluation – Theoretical Analysis 

  

nxn Scoring 

Matrix 

 

1  2 

 2 3 

1 2 3 

2 3 4 

3 4 5 

Divide nxn matrix 

to n/2 x n/2 matrix 

Sequential computing use one processor 

calculate       scores in O(    ) time. 
2n 2n

For 2x2 partition using 2 processors 
First time: first processor calculates                    scores.  
Second time: each of first and second processors 
calculate                   scores in parallel.  
Third time:  first processor calculate                   scores. 
Totally, all tasks finish in O(           ) time  
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 TPL enables the user to express potential 
parallelism in form of lightweight tasks 

 TPL schedules these tasks to run on parallel 
hardware and provides capabilities to cancel 
tasks and wait for completion 

 

.NET Task Parallel Library 

Evaluation – Simulation Results (1)  



Result with 4 sub-tasks (computation time in microseconds) 

  test1 test2 test3 test4 test5 test6 Ave 

sequential 2592 2455 2511 2576 2456 2501 2515.166667 

parallel 1959 1979 1988 1947 1949 1944 1961.4 

Improve 24% 19% 21% 24% 21% 22% 22% 

Average Improvement: 22% 

Result with 9 sub-tasks (computation time in microseconds) 

  test1 test2 test3 test4 test5 test6 Ave 

sequentia

l 2592 2455 2511 2576 2456 2501 2515.166667 

parallel 1771 1782 1776 1772 1781 1772 1776.6 

Improve 32% 27% 29% 31% 27% 29% 29% 

Average Improvement: 29% 

Evaluation – Simulation Results (2)  
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Comparison of Parallel and 
Sequential Computing 

Parallel 

Sequential 

Evaluation – Simulation Results (3)  
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