
Sequence Alignment & Analysis

Linda Emujakporue and Ross Beckley

Department of Computer Science

College of Engineering
Tennessee State University

Advisor: Mr. Heh Miao and Dr. Wei Chen

Senior Project II

OUTLINE

 Introduction

 Requirement analysis

 Functional and non-functional

 Design and implementation

 Architectural and detailed design

 Evaluation

 Conclusion

INTRODUCTION

 Bioinformatics develops
computational theories and
algorithms to analyze
biological structures

 Algorithms, databases,
artificial intelligence,
modeling and simulation,
and more

 Sequence Alignment and Analysis
 Comparing pairs or groups of DNA sequences to find

similarities

 Why is it important?
 It can be used to find functional, structural, or
 evolutionary relationships between the sequences

Sequence Alignment

Problem Statement

 Sequence alignment is critical in Bioinformatics
for finding functional, structural, or evolutionary
relationships.

 Aligning hundreds or thousands pairs/groups of
DNA sequences is time costing.

 High performance computing (parallel
computing) should be introduced into sequence
alignment.

Project Goal and Objectives

 To design and implement parallel
algorithms for efficiently finding regions of
similarities in DNA and proteins

 Implementing a global alignment algorithm

 Implementing a local alignment algorithm

 Converting those algorithms so that they can
be implemented in parallel

To speed up the whole alignment process

 Given a DNA/ Protein sequence, find the
similarities/relationships in the same
group of DNA/Proteins

 Using global and local alignment techniques

 Develop strategies to convert those
techniques into parallel implementation

 Compare non-parallel and parallel
performances

Functional Requirements

 NCBI database will be used to extract DNA
and protein sequences

 NCBI is widely accepted and used in
bioinformatics community

 The algorithms will work with at least 80%
accuracy

 .NET environment will be utilized

 It provides a parallel processing library and
the team is familiar with .NET

Non-Functional Requirements

System Architecture

 Needleman-Wunsh Algorithm

 It produces an optimal alignment of two
protein or DNA sequences allowing for the
introduction of gaps

 The Needleman-Wunsh algorithm aligns
whole sequences (that is why it is called
global alignment)

Global Alignment

Global Alignment (cont.)

SCORING SCHEME can be A C T G

A 1 -1 -1 -1

C -1 1 -1 -1

T -1 -1 1 -1

G -1 -1 -1 1

Match Score = +1

Mismatch Score = -1

Gap penalty = -1

The score of any cell C(i, j) is the maximum of:

 scorediag = C(i-1, j-1) + S(i, j)

 scoreup = C(i-1, j) + g

 scoreleft = C(i, j-1) + g

 where S(i, j) is the substitution score for letters i and j, and g is the gap penalty

 Scoring

 Example (g = -1)

Global Alignment (cont.)

 The calculation for the cell C(2, 2):

 scorediag = C(i-1, j-1) + S(I, j) = 0 + -1 = -1

 scoreup = C(i-1, j) + g = -1 + -1 = -2

 scoreleft = C(i, j-1) + g = -1 + -1 = -2

 T C G

0 -1 -2 -3

A -1 -1 -2 -3

T -2 0 -1 -2

C -3 -1 1 0

G -4 -2 0 2

 * T C G

 A T C G

Globally

aligned

 Smith-Waterman Algorithm

 Smith-Waterman determines the optimal
alignment of subsequences from a pair of
sequences (that is why it is called as local
alignment) .

 For align subsequences there is no penalty
when starting or stopping the alignment in
the middle of the sequences.

Local Alignment

Local Alignment (cont.)

Match Score = +1

Mismatch Score = -1

Gap penalty = -1

The score of any cell C(i, j) is the maximum of:

 scorediag = C(i-1, j-1) + S(i, j)

 scoreup = C(i-1, j) + g

 scoreleft = C(i, j-1) + g

 where S(i, j) is the substitution score for letters i and j, and g is the gap penalty

A C T G

A 1 -1 -1 -1

C -1 1 -1 -1

T -1 -1 2 1

G -1 -1 1 3

SCORING SCHEME can be

 Scoring

 Example (g = -1)

Local Alignment (cont.)

 The scores are
compared to zero, so
that negative values
are dismissed

 The trace-back
method is then
applied starting at the
maximum score and
tracing back to a zero.

C C G

0 0 0 0

A 0 0 0 0

T 0 0 0 0

C 0 1 1 0

G 0 0 0 2

 C C G

 A T C G

Locally

aligned

Parallel Strategies

1st

2nd 2nd

3rd 3rd 3rd

4th 4th

5th

Compute

First

Compute

Second

Compute

Third

Compute

Second

Compute

Third

Compute

Fourth

Compute

Third

Compute

Fourth

Compute

Fifth

j

i

When calculate score matrix S,

the value of S(i,j) depends only

on s(i-1,j) and S(i,j-1)

Parallelization

(divide S to

k×k submatrics)

Matrix S

Evaluation – Theoretical Analysis

nxn Scoring

Matrix

1 2

 2 3

1 2 3

2 3 4

3 4 5

Divide nxn matrix

to n/2 x n/2 matrix

Sequential computing use one processor

calculate scores in O() time.
2n 2n

For 2x2 partition using 2 processors
First time: first processor calculates scores.
Second time: each of first and second processors
calculate scores in parallel.
Third time: first processor calculate scores.
Totally, all tasks finish in O() time

2)2/2/(nn 

2)2/2/(nn 
2)2/2/(nn 

24/3 n

Generally, for kxk partition using k processors

All tasks finish in time.

)
12

())//)(12((2

2
n

k

k
OknknkO




Divide nxn matrix

to n/k x n/k matrix

 TPL enables the user to express potential
parallelism in form of lightweight tasks

 TPL schedules these tasks to run on parallel
hardware and provides capabilities to cancel
tasks and wait for completion

.NET Task Parallel Library

Evaluation – Simulation Results (1)

Result with 4 sub-tasks (computation time in microseconds)

 test1 test2 test3 test4 test5 test6 Ave

sequential 2592 2455 2511 2576 2456 2501 2515.166667

parallel 1959 1979 1988 1947 1949 1944 1961.4

Improve 24% 19% 21% 24% 21% 22% 22%

Average Improvement: 22%

Result with 9 sub-tasks (computation time in microseconds)

 test1 test2 test3 test4 test5 test6 Ave

sequentia

l 2592 2455 2511 2576 2456 2501 2515.166667

parallel 1771 1782 1776 1772 1781 1772 1776.6

Improve 32% 27% 29% 31% 27% 29% 29%

Average Improvement: 29%

Evaluation – Simulation Results (2)

0

500

1000

1500

2000

2500

3000

test1 test2 test3 test4 test5 test6

M
ic

ro
 s

e
c
o

n
d

s

Comparison of Parallel and
Sequential Computing

Parallel

Sequential

Evaluation – Simulation Results (3)

Acknowledgement

 Mr. Heh Miao

 Dr. Wei Chen

 Dr. Ali Sekmen

